首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The production of a ceramic hard material-metal composite directly from a mineral concentrate has great potential application. An homogenizing pretreatment of a mixture of ilmenite (FeTiO3) and graphite, followed by annealing under an argon ambient, showed the formation of titanium carbide and elemental iron. Annealing of the same powder in nitrogen resulted in the formation of a composite of elemental iron and titanium nitride. The nitride was formed at a lower temperature than the carbide with almost complete conversion after 1 hour at 1000 °C. The rate of carbide formation was controlled by carbon diffusion, whereas the nitridation reaction was controlled by either oxygen or nitrogen diffusion. The TiC was found to form via TiC0.5, which slowly increased its carbon content until near stoichiometric TiC was formed; stoichiometric TiN formed directly with no intermediate phases. Titanium carbide showed the presence of a second phase with a slightly smaller unit cell size; this was due to interdiffusion between the iron and TiC. The titanium carbide composite was found to be composed of 3 to 4 μm anhedral iron grains dispersed in the titanium-rich matrix. There was no segregation in the iron/titanium nitride composite with apparently submicron distribution.  相似文献   

2.
The rates of reduction of ferric iron in Fe2O3-CaO-SiO2-Al2O3 slags containing 3 to 21 wt pct Fe2O3 under impinging argon, CO-CO2, or H2-H2O have been studied at 1370 °C under conditions of enhanced mass transfer in the slag using a rotating alumina disc just in contact with the slag surface. For a 6 wt pct Fe slag at a stirring speed of 900 rpm the observed reduction rates by 50 pct H2-H2O were a factor of 2 to 3 times higher than those by 50 pct CO-CO2 and more than one order of magnitude higher than those under pure argon. The observed rates were analyzed to determine the rate-controlling mechanisms for the present conditions. Analysis of the rate data suggests that the rates under 50 pct H2-H2O are predominantly controlled by the slag mass transfer. The derived values of the mass-transfer coefficient followed a square-root dependence on the stirring speed for a given slag and, at a given stirring speed, a linear function of the total iron content of the slags. The rates of oxygen evolution during reduction under pure argon were shown to be consistent with a rate-controlling mechanism involving a fast chemical reaction at the interface and relatively slow mass transfer in the gaseous and the slag phases. The rates of reduction by CO-CO2 (pCO=0.02 to 0.82 atm) were found to be likely of a mixed control by the slag mass transfer and the interfacial reaction. A significant contribution of oxygen evolution to the overall rates was observed for more-oxidized slags and for experiments with relatively low values of pCO. Assuming a parallel reaction mechanism, the estimated net reduction rates due to CO were found to be of the first order in pCO, with the first-order rate constants being approximately a linear function of the ferric concentration. This article is based on a presentation made in the “Geoffrey Belton Memorial Symposium” held in January 2000, in Sydney, Australia, under the joint sponsorship of ISS and TMS. The original symposium appeared in the October 2000 Vol. 31B issue.  相似文献   

3.
Thin oxide films were grown at temperatures from 373 to 1073 K in plasma and in air on commercially pure titanium substrates. It was determined that the color, thickness, composition, phase, and polarization behavior in a copper electrolyte varied with operating conditions: temperature, oxygen partial pressure, and plasma composition. High-temperature and high oxygen partial pressure plasma produced a thick oxide film. The surface film structure transformed from TiO2 (anatase) to TiO2 (rutile) at a temperature of 600 °C. A lower oxide of the form Ti n O2n−1, such as Ti2O3 (which may be porous) or possibly Ti3O5, was formed on a thermally treated sample (400 °C, 80 mtorr O2, 3 hours). This sample exhibited the lowest potential for copper nucleation and gave a very uniform, smooth, and hole-free copper foil.  相似文献   

4.
A liquid Fe-C-Ti system was studied by establishing an iso-titanium-activity state for ternary samples at 1600 °C through the medium of a bath of liquid silver which permits diffusion of titanium only. From the two iso-titanium-activity lines obtained, the self-interaction coefficients of titanium and interaction coefficients of carbon on titanium in liquid iron were estimated:ε Ti Ti = 4.67, ρTi Ti = 0.32, εTi C = −11.94, ρTi C = −4.52, ρTi Ti,C = −9.96 An experimental study has been made of the distribution of titanium between liquid silver and liquid iron at 1600 °C. By the use of the interaction coefficients of titanium and rTi o in liquid iron, the thermodynamic parameters of titanium in liquid silver were determined asr Ti o Ag = 2.44 X 10−3, (εTi Ti Ag = −6.17, (ρTi Ti)Ag = −16.3  相似文献   

5.
A thermodynamic model for calculating the phosphorus distribution ratio between top–bottom combined blown converter steelmaking slags and molten steel has been developed by coupling with a developed thermodynamic model for calculating mass action concentrations of structural units in the slags, i.e., CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags, based on the ion and molecule coexistence theory (IMCT). Not only the total phosphorus distribution ratio but also the respective phosphorus distribution ratio among four basic oxides as components, i.e., CaO, MgO, FeO, and MnO, in the slags and molten steel can be predicted theoretically by the developed IMCT phosphorus distribution ratio prediction model after knowing the oxygen activity of molten steel at the slag–metal interface or the Fe t O activity in the slags and the related mass action concentrations of structural units or ion couples in the slags. The calculated mass action concentrations of structural units or ion couples in the slags equilibrated or reacted with molten steel show that the calculated equilibrium mole numbers or mass action concentrations of structural units or ion couples, rather than the mass percentage of components, can present the reaction ability of the components in the slags. The predicted total phosphorus distribution ratio by the developed IMCT model shows a reliable agreement with the measured phosphorus distribution ratio by using the calculated mass action concentrations of iron oxides as presentation of slag oxidation ability. Meanwhile, the developed thermodynamic model for calculating the phosphorus distribution ratio can determine quantitatively the respective dephosphorization contribution ratio of Fe t O, CaO + Fe t O, MgO + Fe t O, and MnO + Fe t O in the slags. A significant difference of dephosphorization ability among Fe t O, CaO + Fe t O, MgO + Fe t O, and MnO + Fe t O has been found as approximately 0.0 pct, 99.996 pct, 0.0 pct, and 0.0 pct during a combined blown converter steelmaking process, respectively. There is a great gradient of oxygen activity of molten steel at the slag–metal interface and in a metal bath when carbon content in a metal bath is larger than 0.036 pct. The phosphorus in molten steel beneath the slag–metal interface can be extracted effectively by the comprehensive effect of CaO and Fe t O in slags to form 3CaO·P2O5 and 4CaO·P2O5 until the carbon content is less than 0.036 pct during a top–bottom combined blown steelmaking process.  相似文献   

6.
The behavior of carbon deposition on preoxidized Fe-Ni alloys containing 0 to 57.0 mass pct Ni in 10 pct CH4-H2 mixture at 1203 K was studied by metallography and thermogravimetry. Nickel retarded carburization and carbon deposition by lowering the solubility limit of graphite in austenite and by reducing catalytic activity for the pyrolytic reaction of CH4. On oxidation in air, the addition of nickel to iron depressed the development of FeO and, thereby, caused a significant decrease in the thickness of the scale. The exposure of the alloys to 10 pct CH4-H2 mixture after the oxidation in air led to a sudden mass loss in the early stage and then a rapid mass gain. This mass change is primarily ascribed to mass loss by reduction of iron oxides and to mass gain by carbon deposition. The rapid mass gain by carbon deposition is probably due to the formation of active iron by reduction of iron oxides and to the increase in the reaction area by spallation of the scale; the active iron formed may promote filamentous carbon deposition through Fe3C formation and decomposition. Carbon deposition on the alloys containing 27.2 mass pct Ni or more was considerably retarded because of the formation of a thin oxide scale which consists of α-Fe2O3 and spinel (NixFe3−xO4) and the reduction of catalysis by enrichment of nickel in the subscale. However, the amounts of carbon deposition increased compared with those on the as-polished alloys, owing to the presence of reducible iron oxides.  相似文献   

7.
A novel foamable aluminum alloy has been developed. It contains sub-micron-sized MgAl2O4 (spinel) particles that are generated in situ by a reaction of SiO2 with a molten Al-Mg alloy. The study involves an optimization of parameters such as Mg concentration, SiO2 particles size, and reaction time and shows that a composite containing MgAl2O4 particles as chief reinforcement in the matrix leads to effective foaming. Composites containing large sized transition phases and particle agglomerates in the matrix yield poor foam structure. The best foamable composite obtained contained 3.4 vol. pct of ultrafine (80 nm to 1 μm) MgAl2O4 particles uniformly distributed in an Al-Si alloy matrix. The corresponding metal foam contained 75 pct porosity and exhibited a uniform distribution of cells.  相似文献   

8.
The equilibrium solubility of titanium and nitrogen in Fe-Ni melts was measured in the presence of pure solid TiN under various nitrogen pressures in the temperature range of 1843 to 1923 K. The activity coefficients of titanium and nitrogen relative to a 1 mass pct standard state in liquid iron were calculated from the experimental results for Fe-Ni alloys of nickel contents up to 30 mass pct. Nickel decreases the activity coefficient of titanium, but it increases the activity coefficient of nitrogen in an Fe-Ni-Ti-N melt. Therefore, the effect of nickel on the solubility product of TiN is not significant. The first- and second-order interaction parameters of nickel on titanium (e Ti Ni and r Ti Ni , respectively) were determined to be −0.0115 and 0 at 1873 K, respectively. Similarly, the interaction parameters of nickel on nitrogen (e N Ni and r N Ni , respectively) were determined to be 0.012 and 0, respectively, at 1873 K. The temperature dependence of these interaction parameters was also determined.  相似文献   

9.
The stability diagram of MgO, spinel solid solution (MgO·(Al X Cr1−X )2O3), and sesquioxide solid solution ((Al Y Cr1−Y )2O3) as a function of Mg, Al, and O contents at a constant chromium content (18 mass pct) in liquid iron is drawn at 1873 K. The interaction parameters between Mg and other solutes (Al, Cr, Ni, Ti, Si, and C) are determined by the experimental method, which assures equilibrium between Mg vapor and liquid iron, were applied to calculate the diagram. Titanium deoxidation is not recommended for the prevention of spinel formation, because Ti accelerates Mg dissolution from refractory or slag due to its high affinity for Mg (e Mg Ti = − 0.64). The standard Gibbs free energies of formation for the three inclusions (periclase, spinel, and sesquioxide solid solutions) and the tielines between two solid solutions were calculated with the aid of the regular solution model and the thermochemical F*A*C*T database computing system, respectively. The phase stability regions and oxygen content in steel for the current Fe-Mg-Al-Cr (18 mass pct)-O system are compared with those of the previous non-Cr system. Detailed information on the spinel composition according to Mg and Al contents is also available from the present stability diagram.  相似文献   

10.
Equilibrium studies between CaO-SiO2-10 pct MgO-Al2O3-TiO1.5-TiO2 slags, carbon-saturated iron, and a carbon monoxide atmosphere were performed at 1773 K to determine the activities of TiO1.5 and TiO2 in the slag. These thermodynamic parameters are required to predict the formation of titanium carbonitride in the blast furnace. In order to calculate the activity of titanium oxide, the activity coefficient of titanium in carbon-saturated iron-carbon-titanium alloys was determined by measuring the solubility of titanium in carbon-saturated iron in equilibrium with titanium carbide. The solubility and the activity coefficient of titanium obtained were 1.3 pct and 0.023 relative to 1 wt pct titanium in liquid iron or 0.0013 relative to pure solid titanium at 1773 K, respectively. Over the concentration range studied, the effect of the TiO x content on its activity coefficient is small. In the slag system studied containing 35 to 50 pct CaO, 25 to 45 pct SiO2, 7 to 22 pct Al2O3, and 10 pct MgO, the activity coefficients of TiO1.5 and TiO2 relative to pure solid standard states range from 2.3 to 8.8 and from 0.1 to 0.3, respectively. Using thermodynamic data obtained, the prediction of the formation of titanium carbonitride was made. Assuming hypothetical ‘TiO2,’ i.e., total titanium in the slag expressed as TiO2, and using the values of the activity coefficients of TiO1.5 and TiO2 determined, the equilibrium distribution of titanium between blast furnace-type slags and carbon-saturated iron was computed. The value of [pct Ti]/(pct ‘TiO2’) ranges from 0.1 to 0.2.  相似文献   

11.
The phase transformations occurring during magnetizing roasting of leucoxene concentrate in the temperature range 600–1300°C are studied. It is demonstrated, that in the temperature range 600–800°C, only iron oxides are reduced to a metallic state; at temperatures above 800°C, combined reduction of iron and titanium oxides takes place. At 1050°C, reduced specimens are represented by the Ti5O9 and Ti6O13 Magnéli phases. The formation of iron metatitanate (FeTiO3), under reduction conditions and the existence of ferrous iron ions in the Magnéli phases slightly degrade the magnetic properties of the products of magnetizing roasting. In high temperature region (1200–1300°C), a similar effect is exerted by the formation of iron dititanate or anosovite in the system. The possibilities of eliminating the undesired factors decreasing the magnetic properties of the products of magnetizing roasting are determined.  相似文献   

12.
The morphology and composition of the Ti carbosulfides observed in a family of steels containing 0.05 to 0.25 wt pct Ti were determined using optical and electron microscopy, electron microprobe analysis, and energy-dispersive X-ray (EDX) and secondary ion mass spectrometer (SIMS) techniques. It is demonstrated that the Ti carbosulfide phase has a Ti: S mole fraction ratio of 2∶1 and contains an appreciable level of carbon, its identity being Ti4C2S2. The solubility product of Ti4C2S2 in austenite is derived to be log [Ti] [C]0.5[S]0.5=−15,600/T+6.50 and that of TiS to be log [Ti] [S]=−17.640/T+8.20. The former lies between the values for TiN and TiC, whereas the latter is more soluble than TiC. Stringer inclusions consisting of globular Ti4C2S2 surrounded by elongated MnS were observed in the steels with 0.05 to 0.18 wt pct Ti. The volume fraction of the stringers is shown to be related to the sulfur partition coefficient through an empirical power law function. W.J.Lju, formerly with the Department of Metallurgical Engineering, McGill University  相似文献   

13.
Combustion synthesis (CS) of nickel, titanium, and carbon (graphite) reactant particles can result in NiTi−TiC (stoichiometric) or Ni3Ti−TiC x (nonstoichiometric) composites. Since NiTi exhibits both superelasticity and shape memory properties while Ni3Ti does not, it is important to understand the SHS reaction conditions under which each of these composite systems may be synthesized. The stoichiometry of TiC x , for which 0.3≤x≤0.5, has an important controlling effect on the formation of either Ni3Ti or NiTi; i.e., formation of TiC0.7 results in a depletion of titanium and formation of Ni3Ti. This deficiency should be considered when developing the SHS reaction. This article examines the SHS conditions under which Ni3Ti−TiC x composites are produced. Ignition, combustion and microstructure characteristics of nickel, titanium, and carbon (graphite) particles were investigated as a function of initial relative density and thermophysical properties of the reactant mixture. Combination of the thermophysical properties and burning velocities controlled TiC x particle size, yielding a dependence of particle size on cooling rate. Theoretical calculations were performed and are in good agreement with the experimental data presented. Guglielmo Gottoli, formerly Graduate Research Assistant, Metallurgical and Materials Engineering Department, Institute for Space Resources, Colorado School of Mines  相似文献   

14.
Combustion synthesis (CS) of nickel, titanium, and carbon (graphite) reactant particles can result in NiTi−TiC (stoichiometric) or Ni3Ti−TiC x (nonstoichiometric) composites. Since NiTi exhibits both superelasticity and shape memory properties while Ni3Ti does not, it is important to understand the SHS reaction conditions under which each of these composite systems may be synthesized. The stoichiometry of TiC x , for which 0.3≤x≤0.5, has an important controlling effect on the formation of either Ni3Ti or NiTi;i.e., formation of TiC0.7 results in a depletion of titanium and formation of Ni3Ti. This deficiency should be considered when developing the SHS reaction. This article examines the SHS conditions under which Ni3Ti−TiC x composites are produced. Ignition, combustion and microstructure characteristics of nickel, titanium, and carbon (graphite) particles were investigated as a function of initial relative density and thermophysical properties of the reactant mixture. Combination of the thermophysical properties and burning velocities controlled TiC x particle size, yielding a dependence of particle size on cooling rate. Theoretical calculations were performed and are in good agreement with the experimental data presented. Guglielmo Gottoli, formerly Graduate Research Assistant, Metallurgical and Materials Engineering Department, Institute for Space Resources, Colorado School of Mines  相似文献   

15.
Ti51Ni49 compacts consolidated with persistent liquid-phase sintering usually contain Ti2Ni networks at the grain boundaries, which cause adverse effects on mechanical properties. With 0.5 and 1.0 at pct B additions, fine TiB forms during heating and sintering and acts as a nucleation site for Ti2Ni to precipitate within the grain during cooling. The resultant uniform distribution of TiB and Ti2Ni impedes grain growth and prevents the formation of continuous Ti2Ni precipitates at grain boundaries. As a result, a significant increase in tensile elongation, and not a decrease, as in most as-cast titanium alloys, is obtained because of these changes. The tensile strength also increases, without deterioration of the shape memory characteristics. The tensile strength and elongation are close to those of wrought TiNi alloys.  相似文献   

16.
Formation of chromium, titanium, molybdenum, vanadium, and tungsten coatings on diamond under various metallizing conditions and with different phase compositions of the metal sprays is studied. In the initial stages this process is controlled by the interaction of the diamond (carbon) surface with metal oxides through the gas phase as well as by diffusion of the metal spray. After formation of a continuous layer further coating growth is controlled by carbon diffusion. A reduction in the rate of mass transfer to the reaction surface and the rate of carbon yield from it are factors which limit coating growth. The former is connected with depletion of the metal spray; with a decrease in volatile phase flow, and reduction of MoO3, V2O5, and WO3, as well as with their removal during pumping; a reduction of the dissociation and disproportioning rate of the oxides; retardation of metal ion diffusion in the metal spray and appearance of oxides (V2O3, VO, Ti2O3, TiO, etc.) in it which interact weakly with carbon. Emergence of carbon at the surface is specified by its inhibition under diffusion in the growing layer of the coating, filling of carbon vacancies in carbide (TiC, VC) lattices, carbidization of metal, and transformation of lower carbides into higher forms.Translated from Poroshkovaya Metallurgiya, No. 8 (356), pp. 57–63, August, 1992.  相似文献   

17.
This study is concerned with the microstructural analysis and improvement of the hardness and wear resistance of Ti-6Al-4V surface-alloyed materials fabricated by a high-energy electron beam. The mixtures of TiC, TiN, or TiC + TiN powders and CaF2 flux were deposited on a Ti-6Al-4V substrate, and then the electron beam was irradiated on these mixtures. In the specimens processed with a flux addition, the surface-alloyed layers of 1 mm in thickness were homogeneously formed without defects and contained a large amount (over 30 vol pct) of precipitates such as TiC, TiN, (Ti x Al1−x )N, and Ti(C x N1−x ) in the martensitic or N-rich acicular α-Ti matrix. This microstructural modification, including the formation of hard precipitates and hardened matrices in the surface-alloyed layers, improved the hardness and wear resistance. Particularly in the surface-alloyed material fabricated by the deposition of TiN powders, the wear resistance was greatly enhanced to a level 10 times higher than that of the Ti alloy substrate. These findings suggested that surface alloying using high-energy electron-beam irradiation was economical and useful for the development of titanium-based surface-alloyed materials with improved hardness and wear resistance.  相似文献   

18.
The compositions of Fe‐Ti‐O melts in equilibrium with molten iron have been determined by melting mixtures of TiO2, metallic iron and various additions of either Fe2O3 or metallic titanium in a high‐frequency induction furnace. The furnace had a vertically segmented water‐cooled copper crucible which enabled the mixture to be melted with vigorous stirring inside a freeze‐lining of about 1 mm thickness. The slag compositions were found to form a curved line in the ternary diagram FeTiO3 – TiO2 – Ti2O3 with its highest TiO2 content slightly higher than the pseudobrookite (M3O5) composition FeTi2O5 ‐ Ti3O5. The slags were examined by X‐ray diffraction and microprobe analyses. For all slags the main phase was pseudobrookite (M3O5) solid solution with some rutile or Magnéli phase (TinO2n‐1). The most iron‐rich and the most titanium‐rich slags contained also some FeTiO3, respectively Ti2O3 phase. A melting point diagram is suggested with a eutectic groove running between the M3O5 phase and the TiO2 or Magnéli phase from about 1665°C for the iron‐free to the less than 1500°C for the titanium‐free slags.  相似文献   

19.
The pseudoternary section “FeO”-ZnO-(CaO + SiO2) with a CaO/SiO2 weight ratio of 0.71 in equilibrium with metallic iron has been experimentally investigated in the temperature range from 1000 °C to 1300 °C (1273 to 1573 K). The liquidus surface in this pseudoternary section has been determined in the composition range of 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2). The system contains primary-phase fields of wustite (Fe x Zn1−x O1−y ), zincite (Zn z Fe1−z O), fayalite (Fe w Zn2−w SiO4), melilite (Ca2Zn u Fe1−u Si2O7), and pseudowollastonite (CaSiO3). The phase equilibria involving the liquid phase and the solid solutions have also been measured.  相似文献   

20.
The redox behavior of titanium in CaO-SiO2-TiO x melts was investigated using a slag-gas equilibrium technique. Titanium partitioning between Ti3+ and Ti4+ valency states and the ratio of activity coefficients of TiO1.5 and TiO2 were determined as functions of oxygen partial pressure, temperature, and slag composition. The equilibrium experiments were carried out at temperatures between 1783 and 1903 K under CO-CO2-Ar gas atmosphere with oxygen partial pressure ranging from 10−12 to 10−7 atm (1.01×10−10 kPa to 1.01×10−5 kPa). The slags had CaO/SiO2 ratios between 0.55 and 1.35 and total titanium oxide concentrations from 7 to 50 mass pct. Experimental results showed that the Ti3+/Ti4+ ratio in CaO-SiO2-TiO x slags, containing up to 50 mass pct TiO x , increased with decreasing oxygen partial pressure and decreased with increasing CaO/SiO2 ratio and decreasing temperature. Measured variation of the redox ratio Ti3+/Ti4+ with oxygen partial pressure closely followed the ideal behavior. Increasing the CaO/SiO2 ratio increased the ratio of activity coefficients of TiO1.5 and TiO2. The effect of total titania content on this ratio was more complex and in accord with Raman spectroscopy data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号