首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张福明  刘兰菊 《炼铁》1994,13(3):22-25
从1990年起,首钢4座高炉相继进行了重大技术改造。在高炉不同部分别采用了Si3N4-SiC砖,热压小块岩砖,组合砖等新型耐火材料以及“陶瓷杯”技术。其中2,3,4号高炉采用了炭砖-高铝砖综合炉底,将NMA砖砌筑在炉底炉缸交界处“蒜头状”侵蚀区。2号高炉投产后炉底温度-直维持在100-200℃之间。1号高炉采用了“陶瓷杯”和热压炭块相互补充的炉衬结构。  相似文献   

2.
从1900年起,首钢4座高炉相继进行了重大技术改造,在高炉不同部位分别采用了Si3N4-SiC砖,热压小块炭砖,组合砖等新型耐火材料以及“陶瓷杯”技术。其中2号,3号,4号高炉采和了炭砖-高铝砖综合炉底,将NMA砖砌筑在炉底炉缸交界处“蒜头状”侵蚀区。2号高炉凤产后炉底温度一直维持在100-200℃范围。1号高炉采用了“陶瓷杯”和热压炭块相互补充的炉衬结构。  相似文献   

3.
影响高炉炉底炉缸炭砖使用寿命的因素   总被引:6,自引:1,他引:6  
程坤明  J 《炼铁》2006,25(1):11-15
对影响高炉炉底、炉缸炭砖使用寿命的因素进行了分析,认为作为长寿高炉炉底、炉缸炭砖必须具备高抗热应力、高抗碱金属侵蚀、高抗CO分解侵蚀、高抗铁水渗透、高抗氧化性能以及高抗铁水溶蚀性能。  相似文献   

4.
在实验室条件下,考察了不同铁水温度下、炭砖和焦炭同时作为渗碳碳源时,炭砖的侵蚀速率和焦炭的溶解速率及炭砖微观结构的变化。结果表明:在实验范围内,随着铁水温度升高,炭砖侵蚀速率和焦炭溶解速率加快,且焦炭的溶解速率远大于炭砖坩埚的侵蚀速率,说明铁液更易与焦炭发生渗碳反应;侵蚀后的炭砖分层明显,并且有清晰的铁液渗透通道。由此得出,在高炉实际生产中,添加渗碳性能好的焦炭以及定期更新炉缸内死料柱可在一定程度上缓解铁液对炉缸炭砖的侵蚀,从而实现高炉长寿。  相似文献   

5.
邓勇  刘然  刘小杰  李澳淼  李涛 《钢铁》2020,55(8):175-180
 为了延缓炉缸炭砖侵蚀,基于炉缸破损调查试样分析和试验结果,研究了炉缸炭砖侵蚀过程,提出了基于层次分析理论(analytic hierarchy process,AHP)的界面反应综合调控技术。结果表明,炭砖侵蚀经历3个过程:铁水润湿炭砖、铁水渗透炭砖和铁水溶解炭砖。非稳态下铁水对炭砖的润湿作用使界面迅速由气-固界面转变为液-固界面;铁水渗透在炭砖微晶结构的作用下呈现出树枝状特征,且渗透面积越大、渗透延展度越高,炭砖脆化现象就越明显;在铁水碳欠饱和度的作用下,脆化的炭砖易溶解进入铁水中,导致炭砖被侵蚀。基于AHP的界面反应综合调控技术可帮助高炉操作者明确调控方向和调控重点措施,应从铁水成分调控和炭砖性能调控的几个关键技术采取措施以延长炉缸寿命。  相似文献   

6.
《炼铁》2015,(4)
为防止炉缸炉底烧穿事故的发生,黑龙江建龙2号高炉生产7年零9个月后停炉大修。在高炉炉缸不同高度耐火砖、沉积物进行了调查取样,通过SEM—EDS、XRD、化学分析等手段,对耐火砖和沉积物的微观形貌、物相组成和化学成分进行了分析,认为炉缸炭砖侵蚀是热应力和化学侵蚀综合作用的结果。建议采用性能更加优越的微孔刚玉砖和抗铁水溶蚀性能较好的微孔炭砖,防止铁水渗透和碱金属等有害元素对炭砖的化学侵蚀,从而减缓炉缸炭砖的侵蚀速度,以实现高炉长寿。  相似文献   

7.
通过不同脱磷剂对铝碳化硅炭砖、铝炭砖、镁炭砖的侵蚀试验,对其侵蚀前后的矿相变化进行了分析,探讨了耐火材料的侵蚀原因。  相似文献   

8.
掌握武钢1号高炉炉缸的侵蚀状态,明确炭砖的破坏过程及其侵蚀机理,对指导高炉操作、延长高炉使用寿命具有重要意义。通过钻芯取样对武钢1号高炉炉缸开展了破损调查,采用化学分析、光镜、电镜等手段研究了炉缸残余炭砖的侵蚀特性。结果表明,武钢1号高炉炉缸整体呈“锅底”状侵蚀,近铁口区域的侵蚀相对非铁口区更加严重,自铁口中心线向下,残余炭砖的完好层长度逐渐变短,破损层长度逐渐变长。有害元素K在炭砖内的存在形式为硅铝酸盐,Zn和Na元素在炭砖内的存在形式主要为氧化物,Pb元素在炭砖内的存在形式为硫化物。沿着炉缸半径方向,残余炭砖的体密度先增大后减小,在有害元素富集区域达到最大。炭砖结构被破坏主要原因是热应力、有害元素的富集和铁水渗透。  相似文献   

9.
高炉炉缸炭砖环裂机制初探   总被引:2,自引:0,他引:2  
潘宏伟  程树森  余松  赵宏博 《钢铁》2011,46(3):13-17
热力学计算表明,高炉炉缸仅存在纯的碱金属蒸气,不存在碱金属的氧化物和碳酸盐,并且碱金属蒸气压很低,不是对炉缸炭砖进行侵蚀的直接原因,而当前大多文献认为环裂是碱蒸气侵蚀的结果.炭砖传热性能较差时炭砖内部热应力较大,诱发炭砖产生微裂纹,纯的碱金属蒸气通过炭砖的微裂纹不断向炭砖低温区流动和扩散,微裂纹是环裂产生的诱因.在炉缸...  相似文献   

10.
含钛物料护炉方法的探讨   总被引:2,自引:0,他引:2  
炉缸炉底异常侵蚀是影响高炉寿命的主要因素。目前,延长炉缸炉底寿命的主要措施有两个:一是改进炭砖质量,二是采用含钛物料护炉。若能把二者有机结合起来,将会大大延长高炉寿命。为此,作者设想把含钛物料以微粉添加剂形式加入炭砖配料中生产含钛复合炭砖。这种炭砖抗氧化性和抗铁水渗透性较好,而且在炭砖被侵蚀时能及时生成Ti(C、N)沉积物,阻滞碳的进一步溶解和铁水的侵入,对炉底炉缸有保护作用,可克服目前含钛物料护炉方法的一些弊端,有效利用宝贵的钛资源  相似文献   

11.
张建良  王志宇  焦克新  王聪  赵永安 《钢铁》2015,50(11):27-31
 对高炉炉缸用炭砖及刚玉砖的抗渣侵蚀性及挂渣性进行了研究。在1 500 ℃高温条件下进行试验,探究现场高炉渣对炭砖及刚玉砖的侵蚀机理,通过SEM-EDS及XRD等手段分析侵蚀界面的微观组织结构和物相组成,并提出炭砖及刚玉砖挂渣理论。试验结果表明,高炉渣与刚玉砖在侵蚀界面发生反应,反应生成的镁铝尖晶石及刚玉砖中的Al2O3、SiC等高熔点物质阻碍高炉渣对刚玉砖的进一步侵蚀;高炉渣在炭砖表面未生成高熔点物质,炭砖因与高炉渣黏结点少而导致高炉渣对炭砖黏结强度差,从而形成炭砖表面渣皮周期性脱落。  相似文献   

12.
首钢迁钢2号高炉开炉2年后炉缸便发生水温差异常升高现象,长期被迫加钛护炉,控制冶炼强度。研究炭砖的侵蚀是探索炉缸侵蚀的关键。通过化学成分分析、SEM和EDS等手段,研究2号高炉炉缸炭砖异常侵蚀状态和机理。结果表明,13号风口下方象脚区炭砖主要受铁、钾、硫等侵蚀,其中铁的侵蚀深度最深;20号风口下方象脚区炭砖除受铁、钾和硫侵蚀外,受锌侵蚀也较为严重,但锌的侵蚀深度小于铁、钾和硫的侵蚀深度;出铁口区炭砖主要受锌和硫侵蚀,该区炭砖附近存在串气现象,炭砖表层有裂纹,裂纹处主要为锌和硫。炭砖芯部存在混料不均现象,其将导致碳砖随着炉缸温度和压力的变化而产生裂纹。  相似文献   

13.
为延长高炉的使用寿命和掌握炉缸砖衬的侵蚀机制,结合绘制的炉缸侵蚀炉型图,并借助扫描电镜、EDS电子探针和X射线衍射仪等手段分析炉缸炭砖的形貌、元素和物相。研究表明:炉缸炭砖表面上有明显的白色絮状物,且炭砖表面出现疏松和粉化的现象,导致炭砖出现裂缝,加快炭砖侵蚀;富集在炭砖热面的钛化物起到了保护衬作用,使有害元素难以存在受铁水冲刷程度严重的炭砖表面;21号~22号风口和相对应的8号~9号风口正上方对应着热风围管与送风支管连结的三岔口位置,侵蚀最严重;炉缸中锌与一氧化碳以及炭砖中的硅氧化物等物质反应生成氧化锌、硅锌矿和石墨等物质,并透过炭砖的气孔和通缝等逐渐渗入炭砖内部,致使炭砖体积发生膨胀,从而导致炉衬侵蚀。  相似文献   

14.
《炼铁》2015,(1)
邯钢4号高炉一代炉役寿命9年2个月,停炉时发现炉缸炉底侵蚀呈典型的"象脚"状,炉缸侧壁尤其是炉缸和炉底的交界处侵蚀最严重,而炉底满铺炭砖侵蚀较轻微,呈"平锅底"形状。认为炭砖环裂是造成炉衬侵蚀的最大原冈,而锌、碱金属侵入炭砖环裂纹的两端,增大了炭砖环裂的程度,且锌对炭砖的破坏远比碱金属严重。  相似文献   

15.
为延长高炉的使用寿命和掌握炉缸砖衬的侵蚀机制,结合绘制的炉缸侵蚀炉型图,并借助扫描电镜、EDS电子探针和X射线衍射仪等手段分析炉缸炭砖的形貌、元素和物相.研究表明:炉缸炭砖表面上有明显的白色絮状物,且炭砖表面出现疏松和粉化的现象,导致炭砖出现裂缝,加快炭砖侵蚀;富集在炭砖热面的钛化物起到了保护衬作用,使有害元素难以存在...  相似文献   

16.
《炼铁》2015,(4)
鞍钢新1号高炉生产7年零9个月后,在休风灌浆过程中发生炉缸渗铁事故。利用炉缸换衬机会进行了破损调查,取不同部位的残存炭砖、渣皮和黏结物进行理化性能检测,分析碱金属和锌在炉缸内衬的分布状况及钒钛矿护炉效果。结果表明,高炉炉缸炭砖异常侵蚀的主要原因有:炉缸冷却水量不足,冷却壁水管规格小,内衬温度监测点少;炭砖耐氧化侵蚀指标低;微孔炭砖小于1μm孔容积百分率指标偏低;碱金属和Zn的化学侵蚀。  相似文献   

17.
为了延缓炉缸炭砖侵蚀,分析了炉缸铁水硫含量变化趋势,研究了硫元素加速炉缸炭砖侵蚀机理,提出了现代大型高炉脱硫技术措施。结果表明:高炉-铁水预处理联合脱硫、使用高比例球团是炉缸铁水硫含量升高的主要原因;炉缸炭砖与碳含量欠饱和的铁水接触是炭砖侵蚀的直接原因,硫含量升高使铁水表面张力下降、黏度下降,提高了界面反应速率,增大了铁水中碳的传质系数,加速了炭砖侵蚀。在低渣比条件下,控制炉渣碱度在1.12~1.18,MgO含量在9%~12%,Al2O3含量在13.5%~15.5%,并提高铁水中碳、硅、磷元素含量,降低锰、钛元素含量,采用控制炉渣成分和铁水成分的协同脱硫技术,是现代大型高炉脱硫的有效措施。  相似文献   

18.
黄雅彬  席军  韩磊  方永辉  郭卓团 《炼铁》2019,38(1):14-17
对包钢3号高炉炉缸炉底破损状况进行了调查,并对炉缸炉底的侵蚀原因进行了分析。结果表明:炉缸炉底存在"象脚状"侵蚀,侵蚀部位在炉缸炉底交界处,侵蚀的最薄处炭砖残存厚度只有400mm,侵蚀了800mm;风口下方砖衬侵蚀较为严重,风口下方6层大炭砖环裂较为明显,环裂是造成高炉大炭砖破损的主要形式;炉缸自上而下的黏结物中都有碱金属、锌等有害元素的存在,有害元素大量沉积、渗透侵蚀和炭砖体积膨胀是3号高炉炉缸破损的重要原因。  相似文献   

19.
鞍钢2号高炉炉缸炉底炭砖蚀损调查及分析   总被引:1,自引:0,他引:1  
王德民  施月循 《炼铁》1995,14(4):12-14
鞍钢2号高炉停炉破损调查表明,炉缸炭砖环裂严重,炉底炉缸异常侵蚀十分明显。经初步分析认为,热应力是引起炭砖产生环裂的主要因素,死铁层太浅,铁水环流剧烈是形成异常侵蚀的主要原因。  相似文献   

20.
对高炉炉缸侵蚀特征进行了分析,铁口以下是炭砖重点侵蚀区域。在铁口以下选择超微孔炭砖、合适的冷却器结构形式和冷却制度、高炉定期采用钒钛矿护炉,可以在炭砖热面生成由金属Fe、FeO、石墨C、SiO2、Al2O3、Ti(C,N)等构成的永久性内衬,防止或减轻炭砖侵蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号