首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In an artificial market approach with multi-agent systems, the static equilibrium concept is often used in market systems to approximate continuous market auctions. However, differences between the static equilibrium concept and continuous auctions have not been discussed in the context of an artificial market study. In this paper, we construct an artificial market model with both of them, namely, the Itayose and Zaraba method, and show simple characteristic differences between these methods based on computer simulations. The result indicates the further need to model the market system by studying artificial markets. Hidenori Kawamura, Ph.D.: He received Ph.D. degree from Division of Systems and Information Engineering, Graduate School of Engineering, Hokkaido University, Japan in 2000. He is currently an instructor in Graduate School of Information Science and Technology, Hokkaido University, Japan. His research interests include multiagent systems, mass user support, artificial intelligence, complex systems, and tourism informatics. He is a member of IPSJ, JSAI, IEICE, ORSJ, JSTI and AAAI. Yasushi Okada, Ph.D.: He is a master course student in Graduate School of Engineering, Hokkaido University, Japan. He studies multiagent systems. Azuma Ohuchi, Ph.D.: He received his Ph.D. degree in 1974 from Hokkaido University. He is currently the professor in Graduate School of Information Science and Technology, Hokkaido University Japan. His research interstes include systems information engineering, artificial intelligence, complex systems, tourism informatics and medical systems. He is a member of the IPSJ, JSAI, IEEJ, ORSJ, Soc. Contr. Eng., Jap. OR Soc., Soc. Med. Informatics, Hosp. Manag., JSTI and IEEE-SMC. Koichi Kurumatani, Ph.D.: He received his Ph.D. Degree in 1989 from The University of Tokyo. He is currently a leader of Multiagent Research Team in Cyber Assist Research Center (CARC), National Institute of Advanced Industrial Science and Technology (AIST), Japan. His research interests include multiagent systems and mass user support. He is a member of JSAI, IPSJ, JSTI and AAAI.  相似文献   

2.
In this paper, we propose an agent architecture to improve flexibility of a videoconference system with strategy-centric adaptive QoS (Quality of Service) control mechanism. The proposed architecture realizes more flexibility by changing their QoS control strategies dynamically. To switch the strategies, system considers the properties of problems occurred on QoS and status of problem solving process. This architecture is introduced as a part of knowledge base of agent that deals with cooperation between software module of videoconference systems. We have implemented the mechanism, and our prototype system shows its capability of flexible problem solving against the QoS degradation, along with other possible problems within the given time limitation. Thus we confirmed that the proposed architecture can improve its flexibility of a videoconference system compared to traditional systems. Takuo Suganuma, Dr.Eng.: He is a research associate of Research Institute of Electrical Communication of Tohoku University. He received a Dr.Eng. degree from Chiba Institute of Technology in 1997. His research interests include agent-based computing and design methodology for distributed systems. He is a member of IPSJ, IEICE and IEEE. SungDoke Lee: He is a Ph.D. Student in the Graduate School of Information Sciences in Tohoku University. He received his MEng degree at Chonbuk National University, Korea in 1991. His research interests include Flexible Network and Knowledge of Agent. Tetsuo Kinoshita, Dr.Eng.: He is an associate professor of Research Institute of Electrical Communication of Tohoku University. He received a Dr.Eng. degree in information engineering from Tohoku University, Japan. His research interests include knowledge engineering, cooperative distributed processing and agent-based computing. He received the the IPSJ Best Paper Award in 1997, etc. He is a member of IPSJ, IEICE, JSAI, AAAI, ACM and IEEE. Norio Shiratori, Dr.Eng.: After receiving his Dr.Eng degree at Tohoku University, he joined the Research Institute of Electrical Communication of Tohoku University in 1977, and is now a professor at the same University. He has been engaged in research on distributed processing system, and flexible intelligent network. He received the 25th Anniversary of IPSJ Memorial Prize-Winning Paper Award in 1985, the 6th Telecommunications Advancement Foundation Incorporation Award in 1991, the Best Paper Award of ICOIN-9 in 1994, the IPSJ Best Paper Award in 1997, etc. He has been named a Fellow of the IEEE for his contributions to the field of computer communication networks.  相似文献   

3.
This paper describes a musical instrument identification method that takes into consideration the pitch dependency of timbres of musical instruments. The difficulty in musical instrument identification resides in the pitch dependency of musical instrument sounds, that is, acoustic features of most musical instruments vary according to the pitch (fundamental frequency, F0). To cope with this difficulty, we propose an F0-dependent multivariate normal distribution, where each element of the mean vector is represented by a function of F0. Our method first extracts 129 features (e.g., the spectral centroid, the gradient of the straight line approximating the power envelope) from a musical instrument sound and then reduces the dimensionality of the feature space into 18 dimension. In the 18-dimensional feature space, it calculates an F0-dependent mean function and an F0-normalized covariance, and finally applies the Bayes decision rule. Experimental results of identifying 6,247 solo tones of 19 musical instruments shows that the proposed method improved the recognition rate from 75.73% to 79.73%. This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant-in-Aid for Scientific Research (A), No.15200015, and Informatics Research Center for Development of Knowledge Society Infrastructure (COE program of MEXT, Japan). Tetsuro Kitahara received the B.S. from Tokyo University of Science in 2002 and the M.S. from Kyoto University in 2004. He is currently a Ph.D. course student at Graduate School of Informatics, Kyoto University. Since 2005, he has been a Research Fellow of the Japan Society for the Promotion of Science. His research interests include music informatics. He recieved IPSJ 65th National Convention Student Award in 2003, IPSJ 66th National Convention Student Award and TELECOM System Technology Award for Student in 2004, and IPSJ 67th National Convention Best Paper Award for Young Researcher in 2005. He is a student member of IPSJ, IEICE, JSAI, ASJ, and JSMPC. Masataka Goto received his Doctor of Engineering degree in Electronics, Information and Communication Engineering from Waseda University, Japan, in 1998. He then joined the Electrotechnical Laboratory (ETL; reorganized as the National Institute of Advanced Industrial Science and Technology (AIST) in 2001), where he has been engaged as a researcher ever since. He served concurrently as a researcher in Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Corporation (JST) from 2000 to 2003, and an associate professor of the Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering, University of Tsukuba since 2005. His research interests include music information processing and spoken language processing. Dr. Goto received seventeen awards including the IPSJ Best Paper Award and IPSJ Yamashita SIG Research Awards (MUS and SLP) from the Information Processing Society of Japan (IPSJ), Awaya Prize for Outstanding Presentation and Award for Outstanding Poster Presentation from the Acoustical Society of Japan (ASJ), Award for Best Presentation from the Japanese Society for Music Perception and Cognition (JSMPC), WISS 2000 Best Paper Award and Best Presentation Award, and Interaction 2003 Best Paper Award. He is a member of the IPSJ, ASJ, JSMPC, Institute of Electronics, Information and Communication Engineers (IEICE), and International Speech Communication Association (ISCA). Hiroshi G. Okuno received the B.A. and Ph.D from the University of Tokyo in 1972 and 1996, respectively. He worked for Nippon Telegraph and Telephone, Kitano Symbiotic Systems Project, and Tokyo University of Science. He is currently a professor at the Department of Intelligence Technology and Science, Graduate School of Informatics, Kyoto University. He was a visiting scholar at Stanford University, and a visiting associate professor at the University of Tokyo. He has done research in programming languages, parallel processing, and reasoning mechanism in AI, and he is currently engaged in computational auditory scene analysis, music scene analysis and robot audition. He received the best paper awards from the Japanese Society for Artificial Intelligence and the International Society for Applied Intelligence, in 1991 and 2001, respectively. He edited with David Rosenthal “Computational Auditory Scene Analysis” from Lawrence Erlbaum Associates in 1998 and with Taiichi Yuasa “Advanced Lisp Technology” from Taylor and Francis Inc. in 2002. He is a member of IPSJ, JSAI, JSSST, JSCS, ACM, AAAI, ASA, and IEEE.  相似文献   

4.
To achieve smooth real-world interaction between people and computers, we developed a system that displays a three-dimensional computer-graphic human-like image from the waist up (anthropomorphic software robot: hereinafter “robot”) on the display, that interactively sees and hears, and that has fine and detailed control functions such as facial expressions, line of sight, and pointing at targets with its finger. The robot visually searches and identifies persons and objects in real space that it has learned in advance (registered space, which was our office in this case), manages the history information of the places and times it found objects and/or persons, and tells the user, indicating their three-dimensional positions with line of sight and its finger. It interactively learns new objects and persons with line of with their names and owners. By using this function, the robot can engage in simple dialogue (do a task) with the user. Osamu Hasegawa, Ph.D.: He received the B.E. and M.E. degrees from the Science University of Tokyo, in 1988, 1990 respectively. He received Ph.D. degree from the University of Tokyo, in 1993. Currently, he is a senior research scientist at the Electrotechnical Laboratory (ETL), Tsukuba, Japan. His research interests include Computer Vision and Multi-modal Human Interface. Dr. Hasegawa is a member of the AAAI, the Institute of Electronics, Information and Communication Engineers, Japan (IEICE), Information Processing Society of Japan and others. Katsuhiko Sakaue, Ph.D.: He received the B.E., M.E., and Ph.D. degrees all in electronic engineering from the University of Tokyo, in 1976, 1978 and 1981, respectively. In 1981, he joined the Electrotechnical Laboratory, Ministry of International Trade and Industry, and engaged in researches in image processing and computer vision. He received the Encouragement Prize in 1979 from IEICE, and the Paper Award in 1985 from Information Processing Society of Japan. He is a member of IEICE, IEEE, IPSJ, ITE. Satoru Hayamizu, Ph.D.: He is a leader of Interactive Intermodal Integration Lab. at Electrotechnical Laboratory. He received the B.E., M.E., Ph.D. degrees from Tokyo University. Since 1981, he has been working on speech recognition, spoken dialogue, and communication with artifacts. From 1989 to 1990, he was a visiting scholar in Carnegie Mellon University and in 1994 a visiting scientist in LIMSI/CNRS.  相似文献   

5.
We propose a new method for user-independent gesture recognition from time-varying images. The method uses relative-motion extraction and discriminant analysis for providing online learning/recognition abilities. Efficient and robust extraction of motion information is achieved. The method is computationally inexpensive which allows real-time operation on a personal computer. The performance of the proposed method has been tested with several data sets and good generalization abilities have been observed: it is robust to changes in background and illumination conditions, to users’ external appearance and changes in spatial location, and successfully copes with the non-uniformity of the performance speed of the gestures. No manual segmentation of any kind, or use of markers, etc. is necessary. Having the above-mentioned features, the method could be successfully used as a part of more refined human-computer interfaces. Bisser R. Raytchev: He received his BS and MS degrees in electronics from Tokai University, Japan, in 1995 and 1997 respectively. He is currently a doctoral student in electronics and information sciences at Tsukuba University, Japan. His research interests include biological and computer vision, pattern recognition and neural networks. Osamu Hasegawa, Ph.D.: He received the B.E. and M.E. degrees in Mechanical Engineering from the Science University of Tokyo, in 1988, 1990 respectively. He received Ph.D. degree in Electrical Engineering from the University of Tokyo, in 1993. Currently, he is a senior research scientist at the Electrotechnical Laboratory (ETL), Tsukuba, Japan. His research interests include Computer Vision and Multi-modal Human Interface. Dr. Hasegawa is a member of the AAAI, the Institute of Electronics, Information and Communication Engineers, Japan (IEICE), Information Processing Society of Japan and others. Nobuyuki Otsu, Ph.D.: He received B.S., Mr. Eng. and Dr. Eng. in Mathematical Engineering from the University of Tokyo in 1969, 1971, and 1981, respectively. Since he joined ETL in 1971, he has been engaged in theoretical research on pattern recognition, multivariate data analysis, and applications to image recognition in particular. After taking positions of Head of Mathematical Informatics Section (since 1985) and ETL Chief Senior Scientist (since 1990), he is currently Director of Machine Understanding Division since 1991, and concurrently a professor of the post graduate school of Tsukuba University since 1992. He has been involved in the Real World Computing program and directing the R&D of the project as Head of Real World Intelligence Center at ETL. Dr. Otsu is members of Behaviormetric Society and IEICE of Japan, etc.  相似文献   

6.
When dealing with long video data, the task of identifying and indexing all meaningful subintervals that become answers to some queries is infeasible. It is infeasible not only when done by hand but even when done by using latest automatic video indexing techniques. Whether manually or automatically, it is only fragmentary video intervals that we can identify in advance of any database usage. Our goal is to develop a framework for retrieving meaningful intervals from such fragmentarily indexed video data. We propose a set of algebraic operations that includes ourglue join operations, with which we can dynamically synthesize all the intervals that are conceivably relevant to a given query. In most cases, since these operations also produce irrelevant intervals, we also define variousselection operations that are useful in excluding them from the answer set. We also show the algebraic properties possessed by those operations, which establish the basis of an algebraic query optimization. Katsumi Tanaka, D. Eng.: He received his B.E., M.E., and D.Eng. degrees in information science from Kyoto University, in 1974, 1976, and 1981, respectively. Since 1994, he is a professor of the Department of Computer and Systems Engineering and since 1997, he is a professor of the Division of Information and Media Sciences, Graduate School of Science and Technology, Kobe University. His research interests include object-oriented, multimedia and historical databases abd multimedia information systems. He is a member of the ACM, IEEE Computer Society and the Information Processing Society of Japan. Keishi Tajima, D.Sci.: He received his B.S, M.S., and D.S. from the department of information science of University of Tokyo in 1991, 1993, and 1996 respectively. Since 1996, he is a Research Associate in the Department of Computer and Systems Engineering at Kobe University. His research interests include data models for non-traditional database systems and their query languages. He is a member of ACM, ACM SIGMOD, Information Processing Society of Japan (IPSJ), and Japan Society for Software Science and Technology (JSSST). Takashi Sogo, M.Eng.: He received B.E. and M.E. from the Department of Computer and Systems Engineering, Kobe University in 1998 and 2000, respectively. Currently, he is with USAC Systems Co. His research interests include video database systems. Sujeet Pradhan, D.Eng.: He received his BE in Mechanical Engineering from the University of Rajasthan, India in 1988, MS in Instrumentation Engineering in 1995 and Ph.D. in Intelligence Science in 1999 from Kobe University, Japan. Since 1999 May, he is a lecturer of the Department of Computer Science and Mathematics at Kurashiki University of Science and the Arts, Japan. A JSPS (Japan Society for the Promotion of Science) Research Fellow during the period between 1997 and 1999, his research interests include video databases, multimedia authoring, prototypebased languages and semi-structured databases. Dr. Pradhan is a member of Information Processing Society of Japan.  相似文献   

7.
This paper proposes an automatic indexing method named PAI (Priming Activation Indexing) that extracts keywords expressing the author’s main point from a document based on the priming effect. The basic idea is that since the author writes a document emphasizing his/her main point, impressive terms born in the mind of the reader could represent the asserted keywords. Our approach employs a spreading activation model without using corpus, thesaurus, syntactic analysis, dependency relations between terms or any other knowledge except for stop-word list. Experimental evaluations are reported by applying PAI to journal/conference papers. Naohiro Matsumura: He received his B.S. and M.S. in Engineering Science from Osaka University in 1998 and 2000. Currently, he is a Ph.D. candidate in Engineering at the University of Tokyo and a research staff of PRESTO of Japan Science and Technology Corporation (2000–). His research interests include chance discovery, computer-mediated communication, and user-oriented data mining/text mining. Yukio Ohsawa, Ph.D.: BS, U. Tokyo, 1990, MS, 1992, DS, 1995. Research associate Osaka U. (1995). Associate prof. Univ. of Tsukuba (1999–) and also researcher of Japan Science and Technology Corp (2000–). He has been working for the program com. of the Workshop on Multiagent and Cooperative Computation, Annual Conf. Japanese Soc. Artificial Intelligence, International Conf. MultiAgent Systems, Discovery Science, Pacific Asia Knowledge Discovery and Data Mining, International Conference on Web Intelligence, etc. He chaired the First International Workshop of Japanese Soc. on Artificial Intelligence, Chance Discovery International Workshop Series and the Fall Symposium on Chance Discovery from AAAI. Guest editor of Special Issues on Chance Discovery for the Journal of Contingencies and Crisis Management, Journal of Japan Society for Fuzzy Theory and intelligent informatics, regular member of editorial board for Japanese Society of Artificial Intelligence. Currently he is authoring book “Chance Discovery” from Springer Verlag, “Knowledge Managament” from Ohmsha etc. Mitsuru Ishizuka, Ph.D.: He is a professor at the Dept. of Infomation and Communication Eng., School of Information Science and Thechnology, the Univ. of Tokyo. Prior to this position, he worked at NTT Yokosuka Lab. and the Institute of Industrial Science, the Univ. of Tokyo. He earned his B.S., M.S. and Ph.D. in electronic engineering from the Univ. of Tokyo. His research interests include artificial intelligence, WWW intelligence, and multimodal lifelike agents. He is a member of IEEE, AAAI, IEICE Japan, IPS Japan, and Japanese Society for AI.  相似文献   

8.
Electronic Commerce (EC) is a promising field for applying agent and Artificial Intelligence technologies. In this article, we give an overview of the trends of Internet auctions and agent-mediated Web commerce. We describe the theoretical backgrounds of auction protocols and introduce several Internet auction sites. Furthermore, we describe various activities aimed toward utilizing agent technologies in EC and the trends in standardization efforts on agent technologies. Makoto Yokoo, Ph.D.: He received the B.E. and M.E. degrees in electrical engineering, in 1984 and 1986, respectively, from the University of Tokyo, Japan, and the Ph.D. degree in information and communication engineering in 1995 from the University of Tokyo, Japan. He is currently a distinguished technical member in NTT Communication Science Laboratories, Kyoto, Japan. He was a visiting research scientist at the Department of Electrical Engineering and Computer Science, the University of Michigan, Ann Arbor, from 1990 to 1991. His current research interests include multi-agent systems, search, and constraint satisfaction. Satoru Fujita, D.Eng.: He received his B.E. and M.E. degrees in electronic engineering from the University of Tokyo in 1984 and 1986, respectively. He also received his D.Eng. from the University of Tokyo in 1989 for his research on context comprehension in natural language understanding. He joined NEC Corporation in 1989, and is now a principal researcher of Internet Systems Research Laboratories of NEC. He is engaged in research on mobile agents, distributed systems and Web services.  相似文献   

9.
The security of the RSA cryptosystems is based on the difficulty of factoring a large composite integer. In 1994, Shor showed that factoring a large composite is executable in polynomial time if we use a quantum Turing machine. Since this algorithm is complicated, straightforward implementations seem impractical judging from current technologies. In this paper, we propose simple and efficient algorithms for factoring and discrete logarithm problem based on NMR quantum computers. Our algorithms are easier to implement if we consider NMR quantum computers with small qubits. A part of this work was done while both authors were with NTT Communication Science Laboratories. Noboru Kunihiro, Ph.D.: He is Assistant Professor of the University of Electro-Communications. He received his B.E., M.E. and Ph.D. in mathematical engineering and information physics from the University of Tokyo in 1994, 1996 and 2001, respectively. He had been engaged in the research on cryptography and information security at NTT Communication Science Laboratories from 1996 to 2002. Since 2002, he has been working for Department of Information and Communication Engineering of the University of Elector-Communications. His research interest includes cryptography, information security and quantum computations. He was awarded the SCIS’97 paper prize. Shigeru Yamashita, Ph.D.: Associate Professor of Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Japan. He received his B.E., M.E. and Ph.D. degrees in information science from Kyoto University, Kyoto, Japan, in 1993, 1995 and 2001, respectively. His research interests include new type of computer architectures and quantum computation. He received the 2000 IEEE Circuits and Systems Society Transactions on Computer-Aided Design of Integrated Circuits and Systems Best Paper Award.  相似文献   

10.
View-based approach for learning and recognition of 3D object and its pose detection was proved to be affective and efficient, except its high learning cost. In this research, we propose a virtual learning approach which generates learning samples of views of an object from its 3D view model obtained by motion-stereo method. From the generated learning sample views, features of high-order autocorrelation are extracted, and discriminant feature spaces for object recognition and pose detection are built. Recognition experiments on real objects are carried out to show the effectiveness of the proposed method. Caihua Wang, Ph.D.: He received his B.S. in mathematics and M.E. in electronic engineering from Renmin University of China, Beijing, China in 1983 and 1986, and his Ph. D. from Shizuoka University, Hamamatsu, Japan in 1996. He is a JST domestic fellow and is doing his post doctoral research at Electrotechnical Laboratory. His research interests are computer vision and image processing. He is a member of IEICE and IPSJ. Katsuhiko Sakaue, Ph.D.: He received the B.E., M.E., and Ph.D. degrees all in electronic engineering from University of Tokyo, in 1976, 1978 and 1981, respectively. In 1981, he joined the Electrotechnical Laboratory, Ministry of International Trade and Industry, and engaged in researches in image processing and computer vision. He received the Encouragement Prize in 1979 from IEICE, and the Paper Award in 1985 from Information.  相似文献   

11.
In this paper, we discuss quantum algorithms that, for a given plaintextm o and a given ciphertextc o, will find a secret key,k o, satisfyingc o=E(k o,m o), where an encryption algorithm,E, is publicly available. We propose a new algorithm suitable for an NMR (Nuclear Magnetic Resonance) computer based on the technique used to solve the counting problem. The complexity of, our algorithm decreases as the measurement accuracy of the NMR computer increases. We discuss the possibility that the proposed algorithm is superior to Grover’s algorithm based on initial experimental results. Kazuo Ohta, Dr.S.: He is Professor of Faculty of Electro-Communications at the University of Electro-Communications, Japan. He received B.S., M.S., and Dr. S. degrees from Waseda University, Japan, in 1977, 1979, and 1990, respectively. He was researcher of NTT (Nippon Telegraph and Telephone Corporation) from 1979 to 2001, and was visiting scientist of Laboratory for Computer Science e of MIT (Massachusetts Institute of Technology) in 1991–1992 and visiting Professor of Applied Mathematics of MIT in 2000. He is presently engaged in research on Information Security, and theoretical computer science. Dr. Ohta is a member of IEEE, the International Association for Cryptologic Research, the Institute of Electronics, Information and Communication Engineers and the Information Processing Society of Japan. Tetsuro Nishino,: He received the B.S., M.S. and, D.Sc. degrees in mathematics from Waseda University, in 1982, 1984, and 1991 respectively. From 1984 to 1987, he joined Tokyo Research Laboratory, IBM Japan. From 1987 to 1992, he was a Research Associate of Tokyo Denki University, and from 1992 to 1994, he was an Associate Professor of Japan Advanced Institute of Science and Technology, Hokuriku. He is presently an Associate Professor in the Department of Communications and Systems Engineering, the University of Electro-Communications. His main interests are circuit complexity theory, computational learning theory and quantum complexity theory. Seiya Okubo,: He received the B.Eng. and M.Eng. degrees from the University of Electro-Communications in 2000 and 2002, respectively. He is a student in Graduate School of Electro-Communications, the University of Electro-Communications. His research interests include quantum complexity theory and cryptography. Noboru Kunihiro, Ph.D.: He is Assistant Professor of the University of Electro-Communications. He received his B. E., M. E. and Ph. D. in mathematical engineering and information physics from the University of Tokyo in 1994, 1996 and 2001, respectively. He had been engaged in the research on cryptography and information security at NTT Communication Science Laboratories from 1996 to 2002. Since 2002, he has been working for Department of Information and Communication Engineering of the University of Elector-Communications. His research interests include cryptography, information security and quantum computations. He was awarded the SCIS’97 paper prize.  相似文献   

12.
When building a large and complex system, such as satellites, all sorts of risks have to be managed if it were to be successful. For risks in the design of an artifact, various reliability analysis techniques such as FTA or FMEA have been employed in the engineering domain. However, risks exist as well in the development process, and they could result in a failure of the system. In this paper, we present an approach to discovering risks in development process by collecting and organizing information produced during development process at low cost. We describe a prototype system called IDIMS, and show how it can be used to discover risks from e-mail communications between developers. The motivation of our work is to overcome thecapture bottleneck problem, and utilize now wasted information to improve development process. Yoshikiyo Kato: He received his B. Eng. (1998) and M.Eng. (2000) degrees in aeronautics and astronautics from The University of Tokyo. From September 1998 to July 1999, he was an exchange student at Department of Computer Science and Engineering of University of California, San Diego, and worked on software engineering tools. From May 2001 to July 2002, he was a research assistant at National Institute of Informatics (Japan). He is currently a Ph.D. student at Department of Advanced Interdisciplinary Studies of the University of Tokyo. His research interests include knowledge management, CSCW, HCI and software engineering He is a member of AAAI and JSAI. Takahiro Shirakawa: He received his B.Eng. (2000) and M.Eng. (2002) degrees in aeronautics and astronautics from the University of Tokyo. He is currently an assistant examiner at Japan Patent Office. Kohei Taketa: He received his B.Eng. (2000) and M.Eng. (2002) degrees in aeronautics and astronautics from the University of Tokyo. He is currently a software engineer at NTT Data Corp. Koichi Hori, Dr.Eng.: He received B.Eng, M.Eng, and Dr.Eng. degrees in electronic engineering from the University of Tokyo, Japan, in 1979, 1981, and 1984, respectively. In 1984, he joined National Institute of Japanese Literature where he developed AI systems for literature studies. Since 1988, he has been with the U University of Tokyo. He is currently a professor with Department of Advanced Interdisciplinary Studies, The University of Tokyo. From September 1989 to January 1990, he also held a visiting position at University of Compiegne, France. His current research interests include AI technology for supporting human creative activities, cognitive engineering, and Intelligent CAD systems. He is a member of IEEE, ACM, IEICE, IPSJ, JSAI, JSSST and JCSS.  相似文献   

13.
Recently, life scientists have expressed a strong need for computational power sufficient to complete their analyses within a realistic time as well as for a computational power capable of seamlessly retrieving biological data of interest from multiple and diverse bio-related databases for their research infrastructure. This need implies that life science strongly requires the benefits of advanced IT. In Japan, the Biogrid project has been promoted since 2002 toward the establishment of a next-generation research infrastructure for advanced life science. In this paper, the Biogrid strategy toward these ends is detailed along with the role and mission imposed on the Biogrid project. In addition, we present the current status of the development of the project as well as the future issues to be tackled. Haruki Nakamura, Ph.D.: He is Professor of Protein Informatics at Institute for Protein Research, Osaka University. He received his B.S., M.A. and Ph.D. from the University of Tokyo in 1975, 1977 and 1980 respectively. His research field is Biophysics and Bioinformatics, and has so far developed several original algorithms in the computational analyses of protein electrostatic features and folding dynamics. He is also a head of PDBj (Protein Data Bank Japan) to manage and develop the protein structure database, collaborating with RCSB (Research Collaboratory for Structural Bioinformatics) in USA and MSD-EBI (Macromolecular Structure Database at the European Bioinformatics Institute) in EU. Susumu Date, Ph.D.: He is Assistant Professor of the Graduate School of Information Science and Technology, Osaka University. He received his B.E., M.E. and Ph.D. degrees from Osaka University in 1997, 2000 and 2002, respectively. His research field is computer science and his current research interests include application of Grid computing and related information technologies to life sciences. He is a member of IEEE CS and IPSJ. Hideo Matsuda, Ph.D.: He is Professor of the Department of Bioinformatic Engineering, the Graduate School of Information Science and Technology, Osaka University. He received his B.S., M.Eng. and Ph.D. degrees from Kobe University in 1982, 1984 and 1987 respectively. For M.Eng. and Ph.D. degrees, he majored in computer science. His research interests include computational analysis of genomic sequences. He has been involved in the FANTOM (Functional Annotation of Mouse) Project for the functional annotation of RIKEN mouse full-length cDNA sequences. He is a member of ISCB, IEEE CS and ACM. Shinji Shimojo, Ph.D.: He received M.E. and Ph.D. degrees from Osaka University in 1983 and 1986 respectively. He was an Assistant Professor with the Department of Information and Computer Sciences, Faculty of Engineering Science at Osaka University from 1986, and an Associate Professor with Computation Center from 1991 to 1998. During the period, he also worked as a visiting researcher at the University of California, Irvine for a year. He has been Professor with Cybermedia Center (then Computation Center) at Osaka University since 1998. His current research work focus on a wide variety of multimedia applications, peer-to-peer communication networks, ubiquitous network systems and Grid technologies. He is a member of ACM, IEEE and IEICE.  相似文献   

14.
A high performance communication facility, called theGigaE PM, has been designed and implemented for parallel applications on clusters of computers using a Gigabit Ethernet. The GigaE PM provides not only a reliable high bandwidth and low latency communication, but also supports existing network protocols such as TCP/IP. A reliable communication mechanism for a parallel application is implemented on the firmware on a NIC while existing network protocols are handled by an operating system kernel. A prototype system has been implemented using an Essential Communications Gigabit Ethernet card. The performance results show that a 58.3 μs round trip time for a four byte user message, and 56.7 MBytes/sec bandwidth for a 1,468 byte message have been achieved on Intel Pentium II 400 MHz PCs. We have implemented MPICH-PM on top of the GigaE PM, and evaluated the NAS parallel benchmark performance. The results show that the IS class S performance on the GigaE PM is 1.8 times faster than that on TCP/IP. Shinji Sumimoto: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. He received BS degree in electrical engineering from Doshisha University. His research interest include parallel and distributed systems, real-time systems, and high performance communication facilities. He is a member of Information Processing Society of Japan. Hiroshi Tezuka: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His research interests include real-time systems and operating system kernel. He is a member of the Information Processing Society of Japan, and Japan Society for Software Science and Technology. Atsushi Hori, Ph.D.: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His current research interests include parallel operating system. He received B.S. and M.S. degrees in Electrical Engineering from Waseda University, and received Ph.D. from the University of Tokyo. He worked as a researcher in Mitsubishi Research Institute from 1981 to 1992. Hiroshi Harada: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His research interests include distributed/parallel systems and distributed shared memory. He received BS degree in physics from Science University of Tokyo. He is a member of ACM and Information Processing Society of Japan. Toshiyuki Takahashi: He is a Researcher at Real World Computing Partnership since 1998. He received his B.S. and M.S. from the Department of Information Sciences of Science University of Tokyo in 1993 and 1995. He was a student of the Information Science Department of the University of Tokyo from 1995 to 1998. His current interests are in meta-level architecture for programming languages and high-performance software technologies. He is a member of Information Processing Society of Japan. Yutaka Ishikawa, Ph.D.: He is the chief of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. He is currently temporary retirement from Electrotechnical Laboratory, MITI. His research interests include distributed/parallel systems, object-oriented programming languages, and real-time systems. He received the B.S., M.S. and Ph.D degrees in electrical engineering from Keio University. He is a member of the IEEE Computer Society, ACM, Information Processing Society of Japan, and Japan Society for Software Science and Technology.  相似文献   

15.
In this paper, we propose an approach to the construction of an intelligent system that handles various domain information provided on the Internet. The intelligent system adopts statistical decision-making as its reasoning framework and automatically constructs probabilistic knowledge, required for its decision-making, from Web-pages. This construction of probabilistic knowledge is carried out using aprobability interpretation idea that transforms statements in Web-pages into constraints on the subjective probabilities of a person who describes the statements. In this paper, we particularly focus on describing the basic idea of our approach and on discussing difficulties in our approach, including our perspective. Kazunori Fujimoto: He received bachelor’s degree from Department of Electrical Engineering, Doshisha University, Japan, in 1989, and master’s degree from Division of Applied Systems Science, Kyoto University, Japan, in 1992. From there, he joined NTT Electrical Communications Laboratories, Tokyo, Japan, and has been engaged in research on Artificial Intelligence. He is currently interested in probabilistic reasoning, knowledge acquisition, and especially in quantitative approaches to research in human cognition and behavior. Mr. Fujimoto is a member of Decision Analysis Society, The Behaviormetric Society of Japan, Japanese Society for Artificial Intelligence, Information Processing Society of Japan, and Japanese Society for Fuzzy Theory and Systems. Kazumitsu Matsuzawa: He received B.S. and M.S. degrees in electronic engineering from Tokyo Institute of Technology, Tokyo, Japan, in 1975 and 1977. From there, he joined NTT Electrical Communications Laboratories, Tokyo, Japan, and has been engaged in research on computer architecture and the design of LSI. He is currently concerned with AI technology. Mr. Matsuzawa is a member of The Institute of Electronics, Information and Communication Engineers, Information Processing Society of Japan, Japanese Society for Artificial Intelligence, and Japanese Society for Fuzzy Theory and Systems.  相似文献   

16.
In this paper, we propose as a new challenge a public opinion channel which can provide a novel communication medium for sharing and exchanging opinions in a community. Rather than simply developing a means of investigating public opinion, we aim at an active medium that can facilitate mutual understanding, discussion, and public opinion formation. First, we elaborate the idea of public opinion channels and identify key issues. Second, we describe our first step towards the goal using the talking virtualized egos metaphor. Finally, we discuss a research agenda towards the goal. Toyoaki Nishida, Dr.Eng.: He is a professor of Department of Information and Communication Engineering, School of Engineering, The University of Tokyo. He received the B.E., the M.E., and the Doctor of Engineering degrees from Kyoto University in 1977, 1979, and 1984 respectively. His research centers on artificial intelligence in general. His current research focuses on community computing and support systems, including knowledge sharing, knowledge media, and agent technology. He has been leading the Breakthrough 21 Nishida Project, sponsored by Ministry of Posts and Telecommunications, Japan, aiming at understanding and assisting networked communities. Since 1997, he is a trustee for JSAI (Japanese Society for Artificial Intelligence), and serves as the program chair of 1999 JSAI Annual Convention. He is an area editor (intelligent systems) of New Generation Computing and an editor of Autonomous Agents and Multiagent Systems. Nobuhiko Fujihara, Ph.D.: He is a fellow of Breakthrough 21 Nishida project, Communications Research Laboratory sponsored by Ministry of Posts and Telecommunications, Japan. He received the B.E., the M.E., and the Ph.D. in Human Sciences degrees from Osaka University in 1992, 1994, and 1998 respectively. He has a cognitive psychological background. His current research focuses on: (1) cognitive psychological analysis of human behavior in a networked community, (2) investigation of information comprehension process, (3) assessment and proposition of communication tools in networking society. Shintaro Azechi: He is a fellow of Breakthrough 21 Nishida project, Communications Research Laboratory sponsored by Ministry of Posts and Telecommunications, Japan. He received the B.E. and the M.E. of Human Sciences degrees from Osaka University in 1994 and 1996 respectively. He is a Doctoral Candidate of Graduate School of Human Sciences, Osaka University. His current researches focus on (1) human behavior in networking community (2) social infomation process in human mind (3) development of acessment technique for communication tools in networkingsociety. His approach is from social psychological view. Kaoru Sumi, Dr.Eng.: She is a Researcher of Breakthrough 21 Nishida Project. She received her Bachelor of Science at School of Physics, Science University of Tokyo. She received her Master of Systems Management at Graduate School of Systems Management, The university of Tsukuba. She received her Doctor of engineering at Graduate School of Engineering, The University of Tokyo. Her research interests include knowledge-based systems, creativity supporting systems, and their applications for facilitating human collaboration. She is a member of the Information Processing Society of Japan (IPSJ), the Japanese Society for Artificial Intelligence (JSAI). Hiroyuki Yano, Dr.Eng.: He is a senior research official of Kansai Advanced Research Center, Communications Research Laboratory, Ministry of Posts and Telecommunications. He received the B.E., the M.E., and the Doctor of Engineering degrees from Tohoku University in 1986, 1988, and 1993 respectively. His interests of research include cognitive mechanism of human communications. His current research focuses on discourse structure, human interface, and dialogue systems for human natural dialogues. He is a member of the Japanese Society for Artificial Intelligence, the Association for Natural Language Processing, and the Japanese Cognitive Science Society. Takashi Hirata: He is a doctor course student in Graduate School of Information Scienc at Nara Institute of Science and Technology (NAIST). He received a master of engineering from NAIST in 1998. His research interest is knowledge media and knowledge sharing. He is a member of Information Processing Society of Japan (IPSJ), Japan Association for Artificial Intelligence (JSAI) and The Institute of Systems, Control and Information Engineers (ISCIE).  相似文献   

17.
Real-time traffic will be a predominant traffic type in the next generation networks, and networks with 100% reliability and availability will be required by real-time premium traffic. It is believed that QoS guarantees could be better provided by connection oriented networks such as Multi Protocol Label Switching (MPLS). These connection oriented networks are more vulnerable to network failure. Conventional path protection methods perform re-routing to cope with this. However, re-routing always causes packet losses and results in service outage. These losses are bursty in nature and highly degrade the QoS of the real-time premium traffic. Thus, 100% availability cannot be achieved by conventional methods. The novel path protection proposed in this paper recovers the bursty packet losses due to re-routing by using forward error correction (FEC) path. Therefore, it can provide network architecture with no service outage for such traffic. The numerical results show that the proposed method can achieve a very high availability for real-time premium traffic in future IP/MPLS networks.
Mitsuo HayasakaEmail:

Mitsuo Hayasaka   received B.E. and M.E. degrees from the University of Electro-Communications, Tokyo, Japan in 2000 and 2002, respectively. He is currently a Ph.D. student at the University of Electro-Communications, Tokyo, Japan. His research interests involve QoS controls of real-time multimedia communications, and reliable network architecture. He is a member of IEEE, IEICE and IPSJ. Tetsuya Miki   received the B.E. degree from the University of Electro-Communications, Tokyo, Japan in 1965, the M.E. and Ph.D. degrees from Tohoku University, Sendai, Japan in 1967 and 1970, respectively. He joined the Electrical Communication Laboratories of NTT in 1970, where he engaged in the research and development of high-speed digital transmission systems using coaxial cable, fiber-optical transmission systems including the initial WDM technologies, fiber-to-the-home systems, ATM systems, network management systems, and broadband network architecture. He is currently a Professor at the University of Electro-Communications, Tokyo, Japan, and is interested in photonic networks, community networks, access networks, and dependable networks. A fellow of the IEEE and IEICE, he also served as vice-president of the IEEE Communications Society in 1998 and 1999 and as vice-president of IEICE in 2003 and 2004.  相似文献   

18.
In this paper we describe a form of communication that could be used for lifelong learning as contribution to cultural computing. We call it Kansei Mediation. It is a multimedia communication concept that can cope with non-verbal, emotional and Kansei information. We introduce the distinction between the concepts of Kansei Communication and Kansei Media. We then develop a theory of communication (i.e. Kansei Mediation) as a combination of both. Based on recent results from brain research the proposed concept of Kansei Mediation is developed and discussed. The biased preference towards consciousness in established communication theories is critically reviewed and the relationship to pre- and unconscious brain processes explored. There are two tenets of the Kansei Mediation communication theory: (1) communication based on connected unconciousness, and (2) Satori as the ultimate form of experience. Ryohei Nakatsu received the B.S. (1969), M.S. (1971) and Ph.D. (1982) degrees in electronic engineering from Kyoto University. After joining NTT in 1971, he mainly worked on speech recognition technology. He joined ATR (Advanced Telecommunications Research Institute) as the president of ATR Media Integration & Communications Research Laboratories (1994–2002). From the spring of 2002 he is full professor at School of Science and Technology, Kwansei Gakuin University in Sanda (Japan). At the same time he established a venture company, Nirvana Technology Inc., and became the president of the company. In 1978, he received Young Engineer Award from the Institute of Electronics, Information and Communication Engineers Japan (IEICE-J). In 1996, he received the best paper award from the IEEE International Conference on Multimedia. In 1999, 2000 and 2001, he was awarded Telecom System Award from Telecommunication System Foundation and the best paper award from Virtual Reality Society of Japan. In 2000, he got the best paper award from Artificial Intelligence Society of Japan. He is a fellow of the IEEE and the Institute of Electronics, Information and Communication Engineers Japan (IEICE-J), a member of the Acoustical Society of Japan, Information Processing Society of Japan, and Japanese Society for Artificial Intelligence. Matthias Rauterberg received the B.S. in psychology (1978) at the University of Marburg (Germany), the B.S. in philosophy (1981) and computer science (1983), the M.S. in psychology (1981) and computer science (1985) at the University of Hamburg (Germany), and the Ph.D. in computer science (1995) at the University of Zurich (Switzerland). He was a senior lecturer for ‘usability engineering’ in computer science and industrial engineering at the Swiss Federal Institute of Technology (ETH) in Zurich. He was the head of the Man–Machine Interaction research group (MMI) of the Institute for Hygiene and Applied Physiology (IHA) from the Department of Industrial Engineering at the ETH, Zurich. Since 1998, he is a fulltime professor for ‘human communication technology’ at the Department of Industrial Design at the Technical University Eindhoven (The Netherlands), and also since 2004, he is appointed as a visiting professor at the Kwansei Gakuin University (Japan). He received the German GI-HCI award for the best Ph.D. in 1997 and the Swiss Technology Award together with Martin Bichsel for the BUILD-IT system in 1998. Since 2005, he is elected as a member of the Cream of Science in The Netherlands. Ben Salem received the Dip.Arch. (1987) at the Ecole Polytechnique d'Architecture et d'Urbanisme EPAU (Algiers), the M.Arch. (1993) at the School of Architectural Studies of the University of Sheffield (UK), and the Ph.D. in electronics (2003) at the Department of Electronic and Electrical Engineering, University of Sheffield (UK). Since 2001, he is director of Polywork Ltd. (UK). Since 2003. he has a PostDoc position at the Department of Industrial Design of the Technical University Eindhoven (The Netherlands).  相似文献   

19.
Management of telecommunication network requires quick, continuous and decentralized allocation of network bandwidth to various sorts of demands. So as to achieve the efficient network resource allocation, this paper describes a market-based model combining futures market with the agent-based approach. That is, utilization time is divided into many timeslots, and futures markets in hereafter use of bandwidth are opened. In our model, all market participants (software agents) observe only market prices and decide to buy or sell bandwidth trying to maximize their utilities over time so that they can secure enough network resources. The authors discuss network resource allocation through simulation using the proposed model. Masayuki Ishinishi, Ph.D.: He graduated from National Defense Academy in 1995 and 2000. He received the B.E. (1995) and M.E.(2000) degrees in computer science from National Institution for Academic Degrees (NIAD). He received his Ph.D. degree from Tokyo Institute of Technology in 2003. He has been a communications officer at Air Communications and Systems Wing in Japan Air Self-Defence Force (JASDF) since 2003. His research interests include information assurance, agent-based modeling and simulation, multi-agent system and market-based control. He is a member of IEEJ, IPSJ and JSAI. Yuhsuke Koyama, Ph.D.: He received the B.Econ., M.Econ., and Ph.D. degrees in economics from Kyoto University, in 1996, 1998, 2002, respectively. He has been a research associate of Tokyo Institute of Technology since 2002. His research field is evolutionary economics, mathematical sociology and experimental economics. He is a member of JAFEE, JAMS, JASESS and JASAG. Hiroshi Deguchi, Ph.D.: He received his Ph.D. degree in systems science from Tokyo Institute of Technology, in 1986. He also received the Dr. Econ. degree from Kyoto University in 2001. He has been a Professor of Tokyo Institute of Technology since 2002. His research field is evolutionary economics, computational organization theory, agent-based modeling, social system theory, gaming simulation, and philosophy of science. He is a member of SICE, JAMS, IPSJ, PHSC, JASAG and JAFEE. Hajime Kita, Ph.D.: He received the B.E., M.E., and Ph.D. degrees in electrical engineering from Kyoto University, in 1982, 1984, 1991, respectively. He has been a Professor of Kyoto University since 2003, His research field is systems science/engineering, and his research interests are evolutionary computation, neural networks and socio-economic analysis of energy systems, and agentbased modeling. He is a member of IEEJ, IEICE, ISCIE, JNNS, JSER, ORSJ and SICE.  相似文献   

20.
We propose a quantum bit-commitment scheme based on quantum one-way permutations with the unconditionally binding and computationally concealing property. Our scheme reduces exponentially the number of bits which the receiver needs to store until, the opening phase compared with the classical counterpart. Keisuke Tanaka, Ph.D.: He is Assistant Professor of Department of Mathematical and Computing Sciences at Tokyo Institute of Technology. He received his B.S. from Yamanashi University in 1992 and his M.S. and Ph.D. from Japan Advanced Institute of Science and Technology in 1994 and 1997, respectively. For each degree, he majored in computer science. Before joining Tokyo Institute of Technology, he was Research Engineer at NTT Information Sharing Platform Laboratories. His research interests are cryptography, quantum computation, circuit complexity, and the design and analysis of algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号