首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
太阳能冷管的研究及其进展   总被引:3,自引:0,他引:3  
太阳能冷管以沸石分子筛—水为工质对,在一根玻璃管内完成吸附式制冷循环,一根冷管即为一个制冷单元,成功地解决了太阳能吸附式制冷技术难以转化为成果的问题。本文综述了作者近几年来对太阳能冷管首创性提出,以及其结构性能的研制和改进情况。采用真空集热方式和选择性涂层加强冷管对太阳能的吸收,采用整体固化复合吸附剂提高吸附床的吸附和脱附性能。本文还介绍了已制作的三代太阳能冷管型制冷系统的试验样机,在单一提供制冷的基础上,提出了既可以制冷又可以供热水的多功能太阳能冷管。目前,实验结果表明,最新的多功能太阳能冷管COP可达0.268,太阳能制冷与供热的总效率可达87.7%。  相似文献   

2.
冷管型太阳能制冷系统   总被引:14,自引:1,他引:14       下载免费PDF全文
太阳能吸附式制冷作为一种绿色环保型的制冷技术具有良好的应用前景。本文分析了一种吸附床可直接吸收太阳能的、自身完成集热与制冷的玻璃管型太阳能吸附式制冷管,并介绍了以该冷管为基础的太阳能制冷系统。  相似文献   

3.
真空集热型太阳能固体吸附式制冷的理论研究   总被引:5,自引:1,他引:5  
为提高太阳能吸附制冷系统的集热性能。提出了采用真空集热管式吸附床的太阳能固体吸附制冷系统,并对选择吸收式和直接吸热式的真空集热制冷系统分别进行了理论分析与计算模拟。这两种系统均具有较高的制冷性能,前者宜以沸石-水为制冷工质对,而后者则宜采用活性碳-甲醇工质对。分析了工作参数对这两种真空集热型制冷系统的影响,并对系统结构进行了优化研究。  相似文献   

4.
太阳能固体吸附式制冷吸附床的设计   总被引:2,自引:0,他引:2  
描述了固体吸附式制冷系统中吸附床的作用和功能,比较分析了现有太阳能固体吸附式制冷装置的吸附床。通过两种吸附床装置的具体分析,提出了合理设计太阳能吸附床装置的途径。  相似文献   

5.
介绍了太阳能冷管应用吸附制冷的运行机理并建立了太阳能冷管运行周期的数学模型,求解得出吸附 床温度、中芯管壁温度、蒸发器壁面温度等参数随时间变化的关系。进行了太阳能冷管的实验研究,在环境温 度为:36-28℃,冷管周围风速:0.5m/s的条件下,太阳能冷管制冷持续时间为13h,冷管蒸发器温度最低可达 18℃,实验测量值与理论计算结果吻合的较好。  相似文献   

6.
非跟踪聚焦型太阳能冷管及其性能研究   总被引:1,自引:0,他引:1  
该文在提出了真空集热的太阳能冷管的基础上,引入非跟踪聚焦的复合抛物面聚光器(CPC),以增强冷管吸附床对太阳辐射的吸收,提高单管制冷量与制冷系数。从理论上分析并设计了与太阳能冷管相配的CPC反光板,并对其半接受角、平均反射因子、光学效率和聚焦比等参数之间的关系进行了分析。理论与实验结果表明,CPC反光板与该太阳能冷管结合,可以提高吸附床温度,增加脱附量。与轧花铝的平板型相比,非跟踪聚焦型太阳能冷管的制冷量提高了60~67%,COP提高了16~21%。  相似文献   

7.
范介清  罗斌  王六玲 《太阳能学报》2014,35(9):1663-1669
针对太阳能金属管式吸附床传热传质存在的不足,采用增加吸附管传热翅片及增大传质通道的方法,提出一种整体强化传热传质的新型翅片管设计方法,分别设计两种结构形式的太阳能吸附集热器,建立采用活性炭-甲醇为工质对的太阳能吸附式制冷系统。实验表明,采用吸附管横放、两端分别连接汇流导管形式的太阳能翅片管式吸附集热床可明显改善系统制冷性能,其吸附制冷效率是采用吸附管纵向放置、从翅片管上部通过导管连接到汇流导管的吸附床的太阳能吸附式制冷系统的3.56倍。采用性能较好的吸附床可构建太阳能吸附式制冷系统,并在晴朗无云、晴天有时有云、多云辐射强烈及多云辐射微弱4种典型天气情况下,进行吸附制冷系统运行特性和制冷性能实验研究,结果表明前三种天气条件下吸附床维持较高温度(≥80℃)超过4 h,制冷剂解吸较为充分,均产生制冰效果,制冷效率较高,COP最高达0.129;在多云太阳辐射微弱天气条件下,虽然吸附床维持在较高温度(≥80℃)时间不到2 h,但COP可达0.039,体现出该翅片管式吸附床良好的天气适应性。  相似文献   

8.
太阳能吸附式制冷技术进展综述   总被引:1,自引:1,他引:0  
介绍了太阳能吸附式制冷技术的原理与特点,从吸附剂一制冷剂工质对、系统循环方式以及吸附床三个方面详细说明了吸附式制冷技术的进展。通过综合分析指出,优化系统的设计,尤其是对系统关键部件,如吸附床、冷凝器、蒸发器的优化设计,对太阳能吸附式制冷系统的性能非常重要;其次,应加强对性能稳定、操作简便的无阀系统的研究,同时加大对太阳能吸附式制冷与建筑一体化的研究力度,使之符合建筑一体化的要求。最后分析了太阳能吸附式制冷技术的发展前景。  相似文献   

9.
低温储粮是一种具有广阔应用前景及实用价值的科学储粮方法。从降低能耗的角度出发,设计并建造了一种用于低温储粮的太阳能吸附制冷系统,测试分析了系统的热性能。试验测试结果表明:通过合理配置集热器面积,太阳能制冷系统能够满足低温储粮对冷负荷的需求。  相似文献   

10.
新型太阳能吸附式制冷系统研究   总被引:2,自引:0,他引:2  
李云苍 Eric  JH 《新能源》2000,22(11):1-5,15
提出用玻璃材料(玻璃管)代替金属材料做太阳能吸附式制冷系统的太阳能集热器和吸附床,建立了一套该种系统的试验样机,并在实验里对样机进行了试验研究。试验数据和结果表明,该系统的运行可靠,证明以玻璃管(真空管)做太阳能吸附式制冷系统的集热器和吸咐床是可行的。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
14.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

15.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

16.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

17.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

18.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

19.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

20.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号