首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In skeletal muscle, acetylcholinesterase (AChE) exists in homomeric globular forms of type T catalytic subunits (ACHET) and heteromeric asymmetric forms composed of 1, 2, or 3 tetrameric ACHET attached to a collagenic tail (ColQ). Asymmetric AChE is concentrated at the endplate (EP), where its collagenic tail anchors it into the basal lamina. The ACHET gene has been cloned in humans; COLQ cDNA has been cloned in Torpedo and rodents but not in humans. In a disabling congenital myasthenic syndrome, EP AChE deficiency (EAD), the normal asymmetric species of AChE are absent from muscle. EAD could stem from a defect that prevents binding of ColQ to ACHET or the insertion of ColQ into the basal lamina. In six EAD patients, we found no mutations in ACHET. We therefore cloned human COLQ cDNA, determined the genomic structure and chromosomal localization of COLQ, and then searched for mutations in this gene. We identified six recessive truncation mutations of COLQ in six patients. Coexpression of each COLQ mutant with wild-type ACHET in SV40-transformed monkey kidney fibroblast (COS) cells reveals that a mutation proximal to the ColQ attachment domain for ACHET prevents association of ColQ with ACHET; mutations distal to the attachment domain generate a mutant approximately 10.5S species of AChE composed of one ACHET tetramer and a truncated ColQ strand. The approximately 10.5S species lack part of the collagen domain and the entire C-terminal domain of ColQ, or they lack only the C-terminal domain, which is required for formation of the triple collagen helix, and this likely prevents their insertion into the basal lamina.  相似文献   

2.
Collagen-tailed asymmetric acetylcholinesterase (AChE) forms are believed to be anchored to the synaptic basal lamina via electrostatic interactions involving proteoglycans. However, it was recently found that in avian and rat muscles, high ionic strength or polyanionic buffers could not detach AChE from cell-surface clusters and that these buffers solubilized intracellular non-junctional asymmetric AChE rather than synaptic forms of the enzyme. In the present study, asymmetric AChE forms were specifically solubilized by ionic buffers from synaptic basal lamina-enriched fractions, largely devoid of intracellular material, obtained from the electric organ of Torpedo californica and the end plate regions of rat diaphragm muscle. Furthermore, foci of AChE activity were seen to diminish in size, number, and staining intensity when the rat synaptic basal lamina-enriched preparations were treated with the extraction buffers. In the case of Torpedo, almost all the AChE activity was removed from the pure basal lamina sheets. We therefore conclude that a major portion of extracellular collagen-tailed AChE is extractable from rat and Torpedo synaptic basal lamina by high ionic strength and heparin buffers, although some non-extractable AChE activity remains associated with the junctional regions.  相似文献   

3.
Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells.  相似文献   

4.
The selective concentration of neurotransmitter receptors at the postsynaptic membrane is an essential aspect of synaptic differentiation and function. Agrin is an extracellular matrix protein that is likely to direct the accumulation of acetylcholine receptors and several other postsynaptic elements at developing and regenerating neuromuscular junctions. How agrin interacts with the membrane to bring about these changes is unknown. We now report the identification and purification of a protein complex from Torpedo electric organ postsynaptic membranes that is likely to serve as an agrin receptor. The native receptor is a heteromeric complex of two membrane glycoproteins of 190 kDa and 50 kDa. The 190 kDa subunit is sufficient to bind ligand. Peptide sequence analysis revealed that the 190 kDa and 50 kDa subunits are related to the dystrophin-associated glycoproteins alpha- and beta-dystroglycan, respectively. No other candidate agrin receptors were detected. The identification of the agrin receptor opens new avenues toward a mechanistic understanding of synapse differentiation.  相似文献   

5.
6.
TSH receptor (TSHR) cleavage into two subunits (A and B) was explored using two new mammalian cell lines expressing the recombinant receptor; 1) TSHR-10,000 CHO cells overexpressing the TSHR; 2) TSHRmyc cells with a c-myc epitope inserted at residues 338-349. Immunoprecipitation or immunoblotting of TSHR-10,000 cells with mAb to either the A subunit or the B subunit revealed multiple forms of the TSHR: 1) uncleaved receptors of approximately 115 kDa and approximately 100 kDa with complex carbohydrate and high mannose carbohydrate, respectively; 2) two subunit TSHR with an approximately 62 kDa A subunit containing complex carbohydrate. The A subunit was approximately 35 kDa after enzymatic deglycosylation (predicted C-terminus near residue 330). The nonglycosylated B subunit was evident primarily as an approximately 42 kDa band (predicted N terminus near residue 380). The sum of the A and B subunit polypeptide backbones was smaller than the predicted size of the TSHR, a polypeptide backbone (84.5 kDa), raising the possibility that an approximately 5-kDa polypeptide fragment was excised during intramolecular cleavage. This hypothesis was supported by data obtained with the TSHRmyc cells. Thus, mAb to the c-myc epitope and to amino acid residues 22-35 (mAb A10) were equally effective in detecting the single chain forms of the TSHR in these cells. However, the 35 kDa, deglycosylated A subunit was clearly visible on immunoprecipitation with mAb A10 to the TSHR amino terminus, but not with the anti-myc mAb, indicating loss of the c-myc epitope at residues 338-349. Further, even though the A subunit was not detected in TSHRmyc cells with anti-myc mAb, 125I-TSH cross-linking to the cell surface showed similar A subunit expression in TSHRmyc and wild-type TSHR expressing cells. In summary, our study provides a surprising and novel finding for G protein-coupled receptors. Contrary to the prevailing concept of one cleavage site in the TSHR, we present evidence that there are, in fact, two such sites. The TSHR, like insulin, may release a C peptide during intramolecular cleavage into two subunits.  相似文献   

7.
8.
An easily prepared affinity column for acetylcholinesterase is described, which may be operated at ionic strength high enough to prevent aggregation of the asymmetric forms of the enzyme. Specific elution by tetraethylammonium or decamethonium was quantitative. The performance of this column is comparable to that of the column described by Dudai and Silman. It is shown that the hexyl 'spacer arm' strongly participates in the enzyme binding and that its replacement with the more hydrophilic spermine chain lowers the affinity. The hexyl chain itself is shown to bind acetylcholinesterase, although with lower affinity and capacity than the complete column. This binding is also partly reversed by inhibitors. Such hydrophobic columns bind the native asymmetric forms of the enzyme more strongly than the lytic globular ones. The aromatic quaternary ligang inhibits Electrophorus but not Torpedo acetylcholinesterase; therefore the column does not retain the Torpedo enzyme. Differences in Km between acetylcholinesterases of the two species also point to differences in their active sites.  相似文献   

9.
The protein pattern of individual porcine oocytes matured as intact cumulus oocyte complexes either in vivo or in vitro with or without FSH and LH for 43 h were investigated. The synthesis of a 53 kDa polypeptide ceased 21 h after hCG administration whereas a 44 kDa polypeptide were consistently absent in the protein patterns of nearly all of the in vivo maturing oocytes. Further on, a polypeptide with a relative molecular weight of 46000 persisted throughout maturation. A precipitous increase in the synthesis of two other proteins with relative molecular weights of 38000 and 28000, respectively, was observed at 9 and 21 h after hCG injection. In in vitro matured oocytes with or without FSH and LH the synthesis of the 53 kDa band decreased after a culture period of 9h. Further on, the production of the 44 kDa polypeptide ceased only in oocytes incubated in FSH and LH supplemented media after 21 h of culture. On the other hand, the two proteins of Mr 38000 and 28000 appeared only in most of the protein profiles of oocytes cultured with FSH and LH for 43 h. The production of the 46 kDa polypeptide during a 21 h culture period was significantly affected by the presence of additional granulosa cells in connection with the cumulus oocyte complex. Neither the appearance nor the disappearance of the 5 investigated bands was influenced by the presence or absence of the germinal vesicle after 21 h of culture. It is concluded that at least the addition of FSH and LH to the culture medium is necessary for cumulus oocytes complexes to synthesize a protein pattern closely corresponding to that produced by in vivo matured oocytes.  相似文献   

10.
Human natural killer (NK) cells express inhibitory receptors that are specific for different groups of HLA-C or HLA-B alleles. The majority of these receptors belong to the immunoglobulin (Ig) superfamily and are characterized by two or three extracellular Ig-like domains. Here we describe a novel inhibitory NK receptor that is specific for a group of HLA-A alleles. The HLA-A3-specific NK cell clone DP7 has been used for mice immunization. Two mAbs, termed Q66 and Q241, bound to the immunizing clone and stained only a subset of NK cell populations or clones. Among Q66 mAb-reactive clones, we further selected those that did not express any of the previously identified HLA-class I-specific NK receptors. These clones did not lyse HLA-A3+ (or -A11+) target cells, but lysis of these targets could be detected in the presence of Q66 or Q241 mAbs. On the other hand, target cells expressing other HLA-A alleles, including -A1, -A2, and -A24, were efficiently lysed. Moreover, none of the HLA-C or HLA-B alleles that were tested exerted a protective effect. Q66+, but not Q66- NK cell clones, expressed messenger RNA coding for a novel 3 Ig domain protein homologous to the HLA-C (p58) and HLA-B (p70) receptors. The corresponding cDNA (cl.1.1) was used to generate transient and stable transfectants in COS7 and NIH3T3 cell lines, respectively. Both types of transfectants were specifically stained by Q66 and Q241 mAbs. Since the cytoplasmic tail of Q66-reactive molecules was at least 11 amino acid longer than the other known p58/p70 molecules, we could generate an antiserum specific for the COOH-terminus of Q66-reactive molecules, termed PGP-3. PGP-3 immunoprecipitated, only from Q66+ NK cells, molecules displaying a molecular mass of 140 kD, under nonreducing conditions, which resolved, under reducing conditions, in a 70-kD band. Thus, differently from the other p58/p70 receptors, Q66-reactive molecules appear to be expressed as disulphide-linked dimers and were thus termed p140. The comparative analysis of the amino acid sequences of p58, p70, and p140 molecules revealed the existence of two cysteins proximal to the transmembrane region, only in the amino acid sequence of p140 molecules.  相似文献   

11.
Depolarization induced by KCl was found to induce tyrosine phosphorylation of cellular proteins in PC12h cells. By Western blotting with anti-phosphotyrosine antibody, we detected tyrosine phosphorylation of proteins with molecular weights of 120, 110, 105, 95, 75, 70, 66, 44, and 42 kDa in response to KCl. The immunoprecipitates from KCl-treated cells with the antibody contained large amounts of tyrosine-phosphorylated proteins and increased activity of tyrosine kinase. Incubation of the immunoprecipitates with [gamma-32P]ATP resulted in tyrosine phosphorylation of two proteins with the molecular weights of 120 and 140 kDa. These effects were completely abolished by the addition of EGTA before KCl treatment, suggesting that the depolarization-induced tyrosine phosphorylation may require calcium entry into the cells from the medium. Increased activity of tyrosine kinase phosphorylating the 120 and 140 kDa proteins was also recovered from cells stimulated with nerve growth factor, basic fibroblast growth factor, epidermal growth factor, and vasoactive intestinal peptide. Among them, depolarization by KCl elicited the strongest effect. These results indicate that a protein tyrosine kinase that phosphorylate the 120 and 140 kDa proteins is phosphorylated or activated in response to calcium ion, cAMP, and growth factors acting through tyrosine kinase receptors.  相似文献   

12.
13.
The substructure and responses of individual 100-nm synaptic vesicles to osmotic stress have been probed with an atomic force microscope (AFM) operating in tapping mode. Cholinergic synaptic vesicles from the electric organ of Torpedo californica were imaged continuously as the osmolarity of the buffer was decreased. Vesicles in hyposmotic buffer lysed to form flat circular structures on the mica surface with a diameter about two times that of intact vesicles and a thickness of 7.2 +/- 1.7 nm, which can accommodate the lipid bilayer plus the internal proteoglycan. Images of intact vesicles in air reveal creases in the membrane surface. Phase mode AFM images of lysed vesicles in air show the presence of a material not seen on intact vesicles that might be intravesicular proteoglycan released from the membrane at very low osmotic and ionic strength.  相似文献   

14.
Heparan sulphate proteoglycans are increasingly implicated as eukaryotic cell surface receptors for bacterial pathogens. Here, we report that Neisseria gonorrhoeae adheres to proteoglycan receptors on HEp-2 epithelial cells but that internalization of the bacterium by this cell type requires the serum glycoprotein fibronectin. Fibronectin was shown to bind specifically to gonococci producing the OpaA adhesin. Binding assays with fibronectin fragments located the bacterial binding site near the N-terminal end of the molecule. However, none of the tested fibronectin fragments supported gonococcal entry into the eukaryotic cells; a 120 kDa fragment carrying the cell adhesion domain with the amino acid sequence RGD even inhibited the fibronectin-mediated uptake of MS11-OpaA. This inhibition could be mimicked by an RGD-containing hexapeptide and by alpha 5 beta 1 integrin-specific antibodies, suggesting that interaction of the central region of fibronectin with integrin receptors facilitated bacterial uptake. Fibronectin was unable to promote gonococcal entry into HEp-2 cells that had been treated with the enzyme heparinase III, which degrades the glycosaminoglycan side-chains of proteoglycan receptors. On the basis of these results, we propose a novel cellular uptake pathway for bacteria, which involves the binding of the pathogen to glycosaminoglycans that, in turn, act as co-receptors facilitating fibronectin-mediated bacterial uptake through integrin receptors. In this scenario, fibronectin would act as a molecular bridge linking to Opa-proteoglycan complex with host cell integrin receptors.  相似文献   

15.
Adenovirus DNA polymerase is one of three viral proteins and two cellular proteins required for replication of the adenovirus genome. During initiation of viral DNA synthesis the viral DNA polymerase transfers dCMP onto the adenovirus preterminal protein, to which it is tightly bound. The domain structure of the 140 kDa DNA polymerase has been probed by partial proteolysis and the sites of proteolytic cleavage determined by N-terminal sequencing. At least four domains can be recognised within the DNA polymerase. Adenovirus preterminal protein interacts with three of the four proteolytically derived domains. This was confirmed by cloning and expression of each of the individual domains. These data indicate that, like other members of the pol alpha family of DNA polymerases, the adenovirus DNA polymerase has a multidomain structure and that interaction with preterminal protein takes place with non-contiguous regions of the polypeptide chain over a large surface area of the viral DNA polymerase.  相似文献   

16.
Nerve growth factor (NGF) binds to two cell surface receptors, p140trk and p75NGFR, which are both expressed in responsive sensory, sympathetic, and basal forebrain cholinergic neurons. While p140trk belongs to the family of receptor tyrosine kinases, p75NGFR is a member of the TNF/Fas/CD40/CD30 family of receptors. Current views of neurotrophin receptor function have tended to interpret p140trk as the high affinity NGF-binding site. To assess if the binding of NGF to p140trk was distinguishable from binding to high affinity sites on neuronal cells, PC12 cell sublines were generated which expressed p140trk alone, or coexpressed both p140trk and p75NGFR. Kinetic analysis of 125I-NGF binding indicates that it has an unusually slow rate of association with p140trk (k + 1 = 8 x 10(5) M-1 s-1). When both p140trk and p75NGFR receptors are coexpressed, the rate of association of NGF is increased 25-fold to produce a higher affinity binding site. An increase in the rate of internalization was also observed. Since high affinity binding and internalization are believed to be prerequisite for the biological activities of NGF, these results suggest that the biological effects by NGF are derived from a novel kinetic binding site that requires the expression of both receptors. The implications of these results with respect to multisubunit polypeptide receptors are discussed.  相似文献   

17.
The accumulation of dystrophin and associated proteins at the postsynaptic membrane of the neuromuscular junction and their co-distribution with nicotinic acetylcholine receptor (AChR) clusters in vitro suggested a role for the dystrophin complex in synaptogenesis. Co-transfection experiments in which alpha- and beta-dystroglycan form a complex with AChR and rapsyn, a peripheral protein required for AChR clustering (Apel, D. A., Roberds, S. L., Campbell, K. P., and Merlie, J. P. (1995) Neuron 15, 115-126), suggested that rapsyn functions as a link between AChR and the dystrophin complex. We have investigated the interaction between rapsyn and beta-dystroglycan in Torpedo AChR-rich membranes using in situ and in vitro approaches. Cross-linking experiments were carried out to study the topography of postsynaptic membrane polypeptides. A cross-linked product of 90 kDa was labeled by antibodies to rapsyn and beta-dystroglycan; this demonstrates that these polypeptides are in close proximity to one another. Affinity chromatography experiments and ligand blot assays using rapsyn solubilized from Torpedo AChR-rich membranes and constructs containing beta-dystroglycan C-terminal fragments show that a rapsyn-binding site is present in the juxtamembranous region of the cytoplasmic tail of beta-dystroglycan. These data point out that rapsyn and dystroglycan interact in the postsynaptic membrane and thus reinforce the notion that dystroglycan could be involved in synaptogenesis.  相似文献   

18.
Here, we describe the complete deduced amino acid sequence of three unconventional myosins identified in the protozoan parasite Toxoplasma gondii. Phylogenetic analysis reveals that the three myosins represent a novel, highly-divergent class addition to the myosin superfamily. Toxoplasma gondii myosin-A (TgM-A) is a remarkably small approximately 93 kDa myosin that shows a striking departure from typical myosin heavy chain structure in having a head and tail domain but no discernible neck domain. In other myosins, the neck is defined by one or more IQ motifs that serve as potential light chain binding domains. No IQ motifs are apparent in TgM-A. The tail domain of TgM-A encompasses only 57 amino acid residues and is characterized by its highly basic charge (pI = 10.8). The other two Toxoplasma myosins, TgM-B and TgM-C appear to be the product of differential RNA splicing with TgM-B yielding a protein of approximately 114 kDa and TgM-C a protein of approximately 125 kDa. These two myosins are identical throughout their head domain and neck domain which contains a single IQ motif. TgM-B and C share the proximal 245 residues of their tail domain and then diverge in their tail structure distally. The tails, like that of TgM-A, share no homology to any other myosin tails apart from a highly basic charge. The identification of yet another class of unconventional myosins, including a myosin as novel in structure as the 93 kDa TgM-A, continues to underscore the diversity of this family of molecular motors.  相似文献   

19.
We have studied the role of proteoglycans in the function of Macrophage Inflammatory Protein-1 alpha (MIP-1alpha), a member of the proteoglycan binding chemokine family. Sequence and peptide analysis has identified a basic region within MIP-1alpha which appears to be the major determinant of proteoglycan binding and we have now produced a mutant of MIP-1alpha lacking the basic charges on two of the amino acids within this proteoglycan binding site. This mutant (Hep Mut) appears to have lost the ability to bind to proteoglycans. Bioassay of Hep Mut indicates that it has retained stem cell inhibitory properties but has a compromised activity as a monocyte chemoattractant, thus suggesting uncoupling of these two properties of MIP-1alpha. Receptor studies have indicated that the inactivity of Hep Mut on human monocytes correlates with its inability to bind to CCR1, a cloned human MIP-1alpha receptor. In addition, studies using proteoglycan deficient cells transfected with CCR1 have indicated that the proteoglycan binding site in MIP-1alpha is a site that is also involved in the docking of MIP-1alpha to the monocyte receptor. The site for interaction with the stem cell receptor must therefore be distinct, suggesting that MIP-1alpha utilizes different receptors for these two different biological processes.  相似文献   

20.
The major source of amino acids for insect embryos are yolk proteins which accumulate in developing oocytes and are hydrolyzed during embryogenesis. Studies on Musca domestica embryogenesis indicated that a cathepsin B-like proteinase is responsible for yolk protein degradation (Ribolla et al., 1993). In this study, we report the purification of mature cathepsin and show that it is made up of a single 41 kDa polypeptide chain. The Musca domestica cathepsin NH2-terminal 11-residue sequence was determined (Ala-Pro-Lys-Tyr-Val-Asp-Tyr-Gly-Glu-Asn-Glu) and reveals homology with other cathepsins of the papain family. Experiments using serum anti-cathepsin show that the enzyme is stored in oocytes as a 55 kDa zymogen. The activation of the zymogen occurs in vitro only at low pH. In vitro activation in the presence of cysteine protease inhibitors is blocked at an intermediary polypeptide of 48 kDa. Kinetic studies of this activation process at pH 3.5 and 4.6 show that the zymogen is processed in a manner similar to that of pepsin (Foltmann, 1986) and papain (Vernet et al., 1991). We propose that Musca domestica cathepsin zymogen activation occurs in two steps. First, an intramolecular cleavage of the procathepsin polypeptide chain (55,000), induced by low pH gives rise to an intermediary polypeptide (48,000) which then undergoes autolysis to produce the mature enzyme (41,000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号