首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The micro- and nanocomposite particles of the Cu–TiO2 system are synthesized using the laser scanning of a heliumlike film. A model of nanostructure formation on a dielectric surface is proposed.  相似文献   

2.
The self-cleaning properties of the TiO2/SiO2 double-layer films prepared by sol–gel method were investigated. Thin films were prepared by spin coating onto glass and then thermally treated at different temperatures, and characterized using X-ray diffraction, atomic force microscopy, field emission scanning electron microscopy, and UV–visible spectroscopy. The cross-sectional structure of the films was observed by FESEM. The surface roughness of the films was characterized by AFM. The root mean square surface roughness of the thin films was below 2 nm, which should enhance their optical transparency. The photo-induced hydrophilicity of the films was evaluated by water contact angle measurement in air. The photocatalytic activity of the films was studied by the photocatalytic degradation of methylene blue under UV light irradiations. The TiO2/SiO2 double-layer thin films are plausibly applicable to developing self-cleaning materials in various applications such as windows, solar panels, cement, and paints.  相似文献   

3.
The present paper aims to investigate the electrodeposition on steel substrate and the corrosion behavior of Zn–TiO2 nanocomposite coatings. Zn–TiO2 composite coatings were electrodeposited on OL 37 steel from an electrolyte containing ZnCl2, KCl, HBO3 (pH 5.7) brightening agents and dispersed nanosized TiO2. Corrosion measurements were performed in 0.2 g L−1 (NH4)2SO4 solution (pH 3) by using electrochemical methods (open-circuit potential measurements, polarization curves, electrochemical impedance spectroscopy). The results of electrochemical measurements were corroborated with those obtained by using non-electrochemical methods (X-ray diffraction, atomic force microscopy and scanning electron microscopy). The results indicate that the composite coatings exhibit higher corrosion resistance as compared to pure Zn coatings and a non-linear dependence of their polarization resistance on TiO2 concentration in the plating bath was found. The importance of TiO2 nature and concentration regarding the properties of the composite coatings was demonstrated.  相似文献   

4.
The morphology and composition of RuO2–TiO2/Ti and IrO2–RuO2–TiO2/Ti anodes, which have been used for the production of chlorine for more than 10 years, were analyzed by various methods; such as high-resolution scanning electron microscopy, high-resolution Auger electron spectroscopy, electron probe X-ray emission microanalysis and X-ray diffraction analysis. Drastic changes in the surface morphology, including partial exfoliation of a small amount of the oxide layer and a reduction in the content of ruthenium species through dissolution, were observed for the RuO2–TiO2/Ti anode. For the IrO2–RuO2–TiO2/Ti anode, on the other hand, there were moderate changes in the surface morphology and moderate dissolution of iridium and ruthenium species.  相似文献   

5.
Mesoporous TiO2 samples with high crystallinity were successfully synthesized by a fast sol–gel method using polyethylene glycol (PEG) and polyacrylamide (PAM) as dual templates using two-step calcining process. As a comparison, the sample was synthesized by traditional sol–gel method using hexadecyl trimethyl ammonium bromide as the template. The samples were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption, and diffuse reflectance UV–visible absorption spectra. The results showed that when samples were prepared at 500–700 °C in nitrogen atmosphere and 500 °C in air atmosphere, they exhibited typical mesoporous structure, large specific surface area and high crystallinity. The effects of PEG on properties of the samples and the effect of PAM on sol–gel reaction rate were studied. The results show that PAM accelerates gel rate and PEG increases specific surface area of samples. The crystallinity of the samples was increased by using two-step calcining process. Compared with sample synthesized by traditional sol–gel method, visible light response and photocatalytic activity of sample synthesized by the fast sol–gel method were improved.  相似文献   

6.
LiNi0.8Co0.2O2 cathode powders for lithium-ion batteries were prepared by a modified sol–gel method with citric acid as chelating agent and a small amount of hydroxypropyl cellulose as dispersant agent. The structure and morphology of LiNi0.8Co0.2O2 powders calcined at various temperatures for 4 h in air were characterized by means of powder X-ray diffraction analyzer, scanning electron microscope, thermogravimetric analyzer and differential thermal analyzer, and Brunauer–Emmett–Teller specific surface area analyzer. The results show that LiNi0.8Co0.2O2 powders calcined at 800 °C exhibit the best layered structure ordering and appear to have monodispersed particulates surface. In addition, the electrochemical properties of LiNi0.8Co0.2O2 powders as cathode material were investigated by the charge–discharge and cyclic voltammetry studies in a three-electrode test cell. The initial charge–discharge studies indicate that LiNi0.8Co0.2O2 cathode material obtained from the powders calcined at 800 °C shows the largest charge capacity of 231 mAh g−1 and the largest discharge capacity of 191 mAh g−1. And, the cyclic voltammetry studies indicate that Li+ insertion and extraction in LiNi0.8Co0.2O2 powders is reversible except for the first cycle.  相似文献   

7.
A synthesis of 1-dodecanetiol stabilized colloidal quantum dots of CuInSe2 exhibiting photoluminescence in the range of 700–900 nm has been described. The effect of the shell on the energy levels of electrons in CuInSe2–ZnS and CuInSe2–ZnSe core–shell quantum dots has been investigated by quantum mechanical calculations.  相似文献   

8.
A highly dispersive powder with a (ZrO2)0.92(Y2O3)0.03(Gd2O3)0.03(MgO)0.02 composition and specific surface area of 150 m2/g has been synthesized via a method of coprecipitation of hydroxides with the subsequent cryochemical treatment of the gel. Nanoceramics based on the cubic modification of zirconium dioxide with the grain size of ~40–45 nm have been obtained. The temperature dependence of the specific electrical conductance of the nanoceramics within a temperature range of 350–870°C in air has been studied, and the ratio of the ionic and electronic parts of the conductance has been determined. Recommendations for the use of the obtained oxide nanocomposite as an electrolyte for a high-temperature fuel cell have been given.  相似文献   

9.
In this paper, the apparent chain-like core-shell structure Fe3O4–SiO2–chitosan nanoparticles was synthesized by two-step method with cross-linking action of glutaraldehyde based on layer-by-layer technology, the composite particles were characterized by IR, XRD, TEM, SEM, EDS and VSM analytical methods, and the synthesis conditions of the product were studied. The results indicated that the diameter of the composite particles is about 106.5 nm, the parietal layer of chitosan is 20 nm, and after crosslinking action of glutaraldehyde, chitosan uniformaly coated the outer surface of Fe3O4–SiO2.  相似文献   

10.
The approach to synthesize one-dimensional photonic SiO2–TiO2 crystals by sol–gel methods is developed. Using the method of transfer matrices, structures consisting of 13 layers of alternating materials having the properties of one-dimensional photonic crystals with the minimal transmission coefficient of 7% in the photonic band gap range and that of 97.5% in the remaining spectrum parts are calculated and experimentally created. The positions of the photonic band gaps change along with the thicknesses of the layers of the materials composing the photonic crystal. The possibility of creating an optical filter as a result of introducing a structural defect in the form of a layer of doubled thickness is demonstrated.  相似文献   

11.
Electrodeposited Ni–Al2O3 composite coatings were prepared using alumina powders synthesized from solution combustion method, precipitation method and a commercial source. Solution combustion synthesized alumina powder yielded α-phase; precipitation method yielded purely γ-phase; commercial alumina powder was a mixture of α-, δ- and γ-phases. A nickel sulfamate bath was used for electro-codeposition. The current densities (0.23 A dm−2 for 20 h, 0.77 A dm−2 for 6 h, 1.55 A dm−2 for 3 h and 3.1 A dm−2 for 1.5 h) and bath agitation speeds (100, 200, 600 and 1000 rpm) were varied. The pH variations of the bath were higher during the electrodeposition of combustion synthesized alumina. The effect of different forms of alumina particles on the microhardness and microstructure of the nickel composite coating was studied. Composite coating containing combustion synthesized alumina particles was found to have higher microhardness (550 HK). It was found that at lower agitation speed (100 rpm), bigger particles were incorporated and at higher agitation speed (1000 rpm), smaller particles were incorporated. The area fraction of alumina particles incorporated in nickel matrix was highest for commercial alumina (24%). This study shows that it is not suffice to take just the current density and stirring speeds into account to explain the properties of the coatings but also to take into account the source of particles and their properties.  相似文献   

12.
The results of the studies of the conditions of the liquid-phase synthesis of highly dispersed xerogels with a low degree of agglomeration and precursor nanopowders (~10–12 nm) based on zirconium dioxide in the ZrO2–HfO2–Y2O3(CeO2) system are presented. The thermal decomposition of xerogels and formation of crystalline solid solutions with the structure of fluorite are investigated. The optimal conditions for the solidification of nanodispersed powders for fabricating compact ceramics based on solid solutions of ZrO2 and the physical–chemical properties of these ceramics are studied.  相似文献   

13.
Polyethylene glycol (PEG) was added during the sol process of sol–gel SiO2 coating preparation to investigate the effect of PEG addition timing on particle growth, sol structure, and coating properties. When PEG was added before the addition of the catalyst, the particle size increased from 10 nm (in sol without PEG) to 20 nm, and the necessary aging time for dip coating was shortened from 5 days (in sol without PEG) to ~30 h. When PEG was added 24 h later than the catalyst, the uniform sol structure and small particle unit were obtained. With the delay of the PEG addition timing to 120 h, the improvement in the homogeneity of the sol was continued, whereas the porosity of the resulting coatings decreased. The refractive index of PEG-modified SiO2 coatings can be adjusted in a continuous range between 1.14 and 1.20, using the timing when the PEG was added. The highest peak transmittance of glass that was coated with PEG-modified silica coatings reached 99.90%. All the coatings can be changed from hydrophilic to hydrophobic after hexamethyldisilazane vapor modification.  相似文献   

14.
To obtain ultra-optical property in glasses, as the basis for photonic applications, the glass forming region of TiO2–Bi2O3–PbO system was investigated and determined by melting series of compositions in the system. The glass-forming boundary region was defined. The best compositions for glass formation were found to be around the eutectic and peritectic regions in the corresponding phase diagram. Generally, stability increased with the addition of TiO2, acting as a conditional glass former, to a maximum of 15TiO2 mol %. Replacing PbO with Bi2O3 in the glass worsened the stability, due to the increase of heavy cation Bi3– in the glass structure. Finally, the refractive index and dispersion of some stable glasses were measured, which were as high as 2.435 and 10.2, respectively.  相似文献   

15.
16.
A novel spindle-shaped nanoporous anatase TiO2–Ag3PO4 heterostructure with high photocatalytic activity was successfully prepared by a simple method. The Ag3PO4 nanoparticles with a diameter of 20–50 nm were deposited on the surface of the spindle-shaped TiO2. The effect of Ag3PO4 nanoparticles amounts on the photocatalytic activity was investigated. The results showed that the TiO2–Ag3PO4 composite with the mass ratio of TiO2:Ag3PO4 = 1:2 displayed the highest photodegradation efficiency of methylene blue (MB) and Bisphenol A (BPA), which was more highly than that of Ag3PO4 nanoparticles and also indicated a high stability of photocatalytic degradation. The improved activity of the TiO2–Ag3PO4 composite could be attributed to the efficient separation of the photogenerated electron–hole pairs.  相似文献   

17.
The promotion of Fischer-Tropsch catalysts 10%Co/Al2O3, 10%Co/SiO2, 10%Co/TiO2 by 0.5% Ru and the modification of supports by 8.5 wt% ZrO2 have been studied. The following properties: catalyst specific surface area as well as reducibility and dispersion of metallic phase were studied by different techniques: BET, TPR, and H2 chemisorption. The modification of supports by non-reducible ZrO2, results in a decrease of cobalt oxide reduction on Al2O3 and TiO2 but not on SiO2 supports. Additionally the enhancement of cobalt dispersion was found for all catalysts with ZrO2 modified supports. The impact of Ru promotion is likely due to the stabilization of applied supports, prevention or blockage of interaction between surface Co species and support and an increase in cobalt oxide reducibility to the catalytically active metallic cobalt phase.  相似文献   

18.
19.
20.
The compounds of ZnO–TiO2 can combine the characteristics of the individual oxides which has allowed them to be used as photocatalysts in general, photodegradants in the degradation of dyes, photocatalytic oxidation of NOx, antimicrobial, among other applications. In this study, ZnO–TiO2 semiconductor nanocomposites were synthesized in a controlled way at low temperature. These samples of ZnO–TiO2 were characterized using thermal analysis (TDA/TGA), IR and UV–Vis absorption spectroscopies, X-ray diffraction, and scanning electron microscopy. The primary particles showed a nanometric size (<?100 nm) and spheroidal morphology. All samples presented zincite as the main crystalline phase. When Ti4+ was added, the peaks of the diffractograms shifted slightly with respect to pure ZnO. This indicates the formation of a solid solution. Zn2TiO4 was observed in doped ZnO samples treated at 700 °C. The UV–Vis absorption spectra showed a band in the range between 350 and 425 nm, with a maximum around 375 nm (3.31 eV). With the addition of Ti4+, the nanocomposites showed a better absorbance in the visible range. Considering the nature of the synthesis process used, a mechanism was proposed to explanation of the formation of Nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号