首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The human cytomegalovirus (HCMV) DNA polymerase gene (UL54; also called pol) is a prototypical early gene in that expression is mandatory for viral DNA replication. Recently, we have identified the major regulatory element in the UL54 promoter responsive to the major immediate early (MIE) proteins (UL122 and UL123) (J.A. Kerry, M.A. Priddy, and R. M. Stenberg, J. Virol. 68:4167-4176, 1994). Mutation of this element, inverted repeat sequence 1 (IR1), abrogates binding of cellular proteins to the UL54 promoter and reduces promoter activity in response to viral proteins in transient-transfection assays. To extend our studies on the UL54 promoter, we aimed to examine the role of IR1 in UL54 regulation throughout the course of infection. These studies show that viral proteins in addition to the MIE proteins can activate the UL54 promoter. Proteins from UL112-113 and IRS1/TRS1, recently identified as essential loci for transient complementation of HCMV oriLyt-dependent DNA replication, were found to function as transactivators of the UL54 promoter in association with MIE proteins. UL112-113 enhanced UL54 promoter activation by MIE proteins three- to fourfold. Constitutive expression of UL112-113 demonstrated that the MIE protein dependence of UL112-113 transactivational activity was not related to activation of cognate promoter sequences, suggesting that UL112-113 proteins function in cooperation with the MIE proteins. Mutation of IR1 was found to abrogate stimulation of the UL54 promoter by UL112-113, suggesting that this element is also involved in UL112-113 stimulatory activity. These results demonstrate that additional viral proteins influence UL54 promoter expression in transient-transfection assays via the IR1 element. To confirm the biological relevance of IR1 in regulating UL54 promoter activity during viral infection, a recombinant virus construct containing the UL54 promoter with a mutated IR1 element regulating expression of the chloramphenicol acetyltransferase (CAT) reporter gene (RVIRmCAT) was generated. Analysis of RVIRmCAT revealed that mutation of IR1 dramatically reduces UL54 promoter activity at early times after infection. However, at late times after infection CAT expression by RVIRmCAT, as assessed by RNA and protein levels, was approximately equivalent to expression by wild-type RVpolCAT. These data demonstrate IR1-independent regulation of the UL54 promoter at late times after infection. Together these results show that multiple regulatory events affect UL54 promoter expression during the course of infection.  相似文献   

2.
3.
4.
5.
6.
7.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the proliferation and maturation of normal myeloid progenitor cells and can also stimulate the growth of acute myelogenous leukemia (AML) blasts. GM-CSF is not normally produced by resting cells but is expressed by a variety of activated cells including T lymphocytes, macrophages, and certain cytokine-stimulated fibroblasts and endothelial cells. Production of GM-CSF by cultured AML cells has been demonstrated, and GM-CSF expression by normal myeloid progenitors has been postulated to play a role in myelopoiesis. We have investigated the regulation of expression of GM-CSF in AML cell lines, and our results demonstrate the presence of a strong constitutive promoter element contained within 53 bp upstream of the cap site. We have also identified a negative regulatory element located immediately upstream of the positive regulatory element (within 69 bp of the cap site) that is active in AML cell lines but not T cells or K562 CML cells. Competition transfection and mobility shift studies demonstrate that this activity correlates with binding of a 45-kDa protein.  相似文献   

8.
9.
10.
11.
12.
The cellular localization and virion association of the human cytomegalovirus (HCMV) UL97 protein were studied. UL97 protein demonstrated early nuclear localization followed by late perinuclear accumulation. It was found to be a structural virion constituent detected in all three enveloped forms of extracellular viral particles and shown to be phosphorylated by the virion-associated protein kinase. UL97 protein immunoprecipitated from virions and from infected cells demonstrated protein kinase activity manifested by autophosphorylation. This activity was reduced in the presence of a ganciclovir-resistance mutation at residue 460, implicated in nucleotide binding. A mutant virus, from which the proposed UL97 kinase catalytic domain had been deleted, could not be propagated in the absence of a helper wild-type virus. The characterization of UL97 protein as a virion-associated protein kinase which appears essential for viral replication, provides further insight into HCMV replication and could identify a potential novel target for antiviral therapy.  相似文献   

13.
14.
The promoter region of the human aldose reductase gene has been identified upstream of the translation start ATG codon. The promoter contains a TATA box, a CCAAT promoter element, and three Sp1 protein binding consensus sequences upstream of the capsite. A 640-base pair insert spanning +31 to -609 directs expression of the reporter gene chloramphenicol acetyltransferase in an orientation-specific manner in transfected Hep G2 cells. The promoter activity remained constant with deletions from base pairs -609 to -186. The TATA and the CCAAT consensus sequences show significant promoter activity, whereas the three Sp1 binding consensus sequences, individually, have no significant promoter activity. A GA-rich region (-186 to -146) contains two CGGAAA/G motifs, which show promoter activity and interaction with Hep G2 nuclear extract and GA-binding proteins (GABP alpha and GABP beta 1) as shown by mobility shift assays and DNase I footprinting. Similar cis-elements in herpes simplex virus type 1 interact with rat liver GABP and the viral VP16 protein to mediate the induction of immediate early viral genes. A GC-rich region (-87 to -31) is identified by mobility shift assay, and a consensus sequence of an androgen response element is present at -396 to -382. The human aldose reductase promoter, thus, has regulatory response elements that may be important during early development and puberty. These regulatory elements may play a significant role in the development of certain diabetic complications.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号