首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multicast is an efficient method for transmitting the same packets to a group of destinations. In energy-constrained wireless ad hoc networks where nodes are powered by batteries, one of the challenging issues is how to prolong the multicast lifetime. Most of existing work mainly focuses on multicast lifetime maximization problem in wireless packet loss-free networks. However, this may not be the case in reality. In this paper, we are concerned with the multicast lifetime maximization problem in unreliable wireless ad hoc networks. To solve this problem, we first define the multicast lifetime as the number of packets transmitted along the multicast tree successfully. Then we develop a novel lifetime maximization genetic algorithm to construct the multicast tree consisting of high reliability links subject to the source and destination nodes. Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.  相似文献   

2.
In this paper, we address the problem of broadcast routing in mobile ad hoc networks from the viewpoint of energy efficiency. In an ad hoc wireless network, each node runs on a local energy source which has a limited energy lifespan. Thus, energy conservation is a critical issue in ad hoc networks. One approach for energy conservation is to establish routes which require lowest total energy consumption. This optimization problem is referred as the minimum‐energy broadcast routing problem (MEBRP). In this paper, we propose new efficient algorithms for the construction of energy‐efficient trees for broadcast in mobile ad hoc networks. These algorithms exploit the broadcast nature of the wireless channel, and address the need for energy‐efficient operations. Empirical studies show that our algorithms are able to achieve better performance than algorithms that have been developed for MEBRP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Topology control plays an important role in the design of wireless ad hoc and sensor networks and has demonstrated its high capability in constructing networks with desirable characteristics such as sparser connectivity, lower transmission power, and smaller node degree. However, the enforcement of a topology control algorithm in a network may degrade the energy‐draining balancing capability of the network and thus reduce the network operational lifetime. For this reason, it is important to take into account energy efficiency in the design of a topology control algorithm in order to achieve prolonged network lifetime. In this paper, we propose a localized energy‐efficient topology control algorithm for wireless ad hoc and sensor networks with power control capability in network nodes. To achieve prolonged network lifetime, we introduce a concept called energy criticality avoidance and propose an energy criticality avoidance strategy in topology control and energy‐efficient routing. Through theoretical analysis and simulation results, we prove that the proposed topology control algorithm can maintain the global network connectivity with low complexity and can significantly prolong the lifetime of a multi‐hop wireless network as compared with existing topology control algorithms with little additional protocol overhead. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Mobile ad hoc networks are recognized by their abilities to form, sustain, and deform networks on‐the‐fly without the need for any pre‐established and fixed infrastructures. This wireless multi‐hop technology requires adaptive networking protocols with low control overhead and low power consumption to operate efficiently. Existing research so far are mainly concerned with unicast routing for ad hoc mobile networks. There is a growing interest in supporting multicast communication in an ad hoc mobile environment. In this paper, the associativity‐based ad hoc multicast (ABAM) routing protocol is proposed. The concept of association stability is utilized during multicast tree discovery, selection, and reconfiguration. This allows routes that are long‐lived to be selected, thereby reducing the frequency of route reconstructions. ABAM employs a localized route reconstruction strategy in response to migrations by source, receiver, and tree nodes. It can repair an affected subtree via a single route reconstruction operation. ABAM is robust since the repair can be triggered by a node in the tree or by the migrated node itself. ABAM is also capable of handling multicast group dynamics when mobile hosts decide to join and leave an existing multicast group. Our simulation results reveal that under different mobility scenarios and multicast group size, ABAM has low communication overhead and yields better throughput performance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A wireless ad hoc network consists of mobile nodes that are powered by batteries. The limited battery lifetime imposes a severe constraint on the network performance, energy conservation in such a network thus is of paramount importance, and energy efficient operations are critical to prolong the lifetime of the network. All-to-all multicasting is one fundamental operation in wireless ad hoc networks, in this paper we focus on the design of energy efficient routing algorithms for this operation. Specifically, we consider the following minimum-energy all-to-all multicasting problem. Given an all-to-all multicast session consisting of a set of terminal nodes in a wireless ad hoc network, where the transmission power of each node is either fixed or adjustable, assume that each terminal node has a message to share with each other, the problem is to build a shared multicast tree spanning all terminal nodes such that the total energy consumption of realizing the all-to-all multicast session by the tree is minimized. We first show that this problem is NP-Complete. We then devise approximation algorithms with guaranteed approximation ratios. We also provide a distributed implementation of the proposed algorithm. We finally conduct experiments by simulations to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the proposed algorithm significantly outperforms all the other known algorithms.  相似文献   

6.
In this paper, we present new algorithms for online multicast routing in ad hoc networks where nodes are energy-constrained. The objective is to maximize the total amount of multicast message data routed successfully over the network without any knowledge of future multicast request arrivals and generation rates. Specifically, we first propose an online algorithm for the problem based on an exponential function of energy utilization at each node. The competitive ratio of the proposed algorithm is analyzed if admission control of multicast requests is permitted. We then provide another online algorithm for the problem, which is based on minimizing transmission energy consumption for each multicast request and guaranteeing that the local network lifetime is no less than gamma times of the optimum, where gamma is constant with 0 < gammaleq 1. We finally conduct extensive experiments by simulations to analyze the performance of the proposed algorithms, in terms of network capacity, network lifetime, and transmission energy consumption for each multicast request. The experimental results clearly indicate that, for online multicast routing in ad hoc wireless networks, the network capacity is proportional to the network lifetime if the transmission energy consumption for each multicast request is at the same time minimized. This is in contrast to the implication by Kar et al. that the network lifetime is proportional to the network capacity when they considered the online unicast routing by devising an algorithm based on the exponential function of energy utilization at each node.  相似文献   

7.
Wireless ad hoc networks are characterized by several performance metrics, such as bandwidth, transport, delay, power, etc. These networks are examined by constructing a tree network. A core node is usually chosen to be the median or center of the multicast tree network with a tendency to minimize a performance metric, such as delay or transport. In this paper, we present a new efficient strategy for constructing and maintaining a core node in a multicast tree for wireless ad hoc networks undergoing dynamic changes, based on local information. The new core (centdian) function is defined by a convex combination signifying total transport and delay metrics. We provide two bounds of O(d) and O(d+l) time for maintaining the centdian using local updates, where l is the hop count between the new center and the new centdian, and d is the diameter of the tree network. We also show an O(n log n) time solution for finding the centdian in the Euclidian complete network. Finally, an extensive simulation for the construction algorithm and the maintenance algorithm is presented along with an interesting observation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We investigate the problem of broadcast routing in energy constrained stationary wireless ad hoc networks with an aim to maximizing the network lifetime measured as the number of successive broadcast sessions that can be supported. We propose an energy-aware spanning tree construction scheme supporting a broadcast request, considering three different signal transmission schemes in the physical layer: (a) point-to-point, (b) point-to-multipoint, and (c) multipoint-to-point. First we present a centralized algorithm that requires global topology information. Next, we extend this to design an approximate distributed algorithm, assuming the availability of k-hop neighborhood information at each node, with k as a parameter. We prove that the centralized scheme has time complexity polynomial in the number of nodes and the distributed scheme has a message complexity that is linear in the number of nodes. Results of numerical experiments demonstrate significant improvement in network lifetime following our centralized scheme compared to existing prominent non-cooperative broadcasting schemes proposed to solve the same lifetime maximization problem in wireless ad hoc networks. Due to lack of global topology information, the distributed solution does not produce as much advantage as the centralized solution. However, we demonstrate that with increasing value of k, the performance of the distributed scheme also improves significantly.  相似文献   

9.
Energy-Efficient Broadcast and Multicast Trees in Wireless Networks   总被引:10,自引:0,他引:10  
The wireless networking environment presents formidable challenges to the study of broadcasting and multicasting problems. In this paper we focus on the problem of multicast tree construction, and we introduce and evaluate algorithms for tree construction in infrastructureless, all-wireless applications. The performance metric used to evaluate broadcast and multicast trees is energy-efficiency. We develop the Broadcast Incremental Power (BIP) algorithm, and adapt it to multicast operation by introducing the Multicast Incremental Power (MIP) algorithm. These algorithms exploit the broadcast nature of the wireless communication environment, and address the need for energy-efficient operation. We demonstrate that our algorithms provide better performance than algorithms that have been developed for the link-based, wired environment.  相似文献   

10.
Each node in a wireless ad hoc network runs on a local energy source that has a limited energy life span. Thus, energy conservation is a critical issue in such networks. In addition, it is in general desirable to construct routes with low hop counts as a route with a high hop count is more likely to be unstable (because the probability that intermediate nodes will move away is higher). In this paper, we address these two issues concurrently with energy conservation as the primary objective and low hop count as the secondary objective. One way of addressing the energy conservation issue is to construct routes that maximize the minimum residual battery capacity available among all nodes in each route. A broadcast tree with all routes satisfying this condition is referred to as a maximum residual energy resource broadcast tree. A maximum residual energy resource broadcast tree with the least diameter is referred to as a minimum diameter maximum residual energy resource broadcast tree and the problem of constructing such a tree is referred to as the minimum diameter maximum residual energy resource broadcast routing problem (MDMRERBRP). We propose an algorithm for MDMRERBRP and prove that MDMRERBRP is optimally solvable in polynomial time using the proposed algorithm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The node throughput, which is defined as the total rate received at each node, is evaluated for the interference limited TDMA and TDMA/CDMA wireless ad hoc networks. In the TDMA wireless ad hoc network, there is only one transmission link connected to each node in the same time slot, whereas in the TDMA/CDMA wireless ad hoc network there are multiple transmission links connected to each node in the same time slot. We first derive the node throughput for these two wireless ad hoc networks and then make a comparison of the node throughput between them. The theoretical results and simulation results both reveal that the TDMA wireless ad hoc network outperforms the TDMA/CDMA wireless ad hoc network in the node throughput. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Multicasting is an effective way to provide group communication. In mobile ad hoc networks (MANETs), multicasting can support a wide variety of applications that are characterized by a close degree of collaboration. Since MANETs exhibit severe resource constraints such as battery power, limited bandwidth, dynamic network topology and lack of centralized administration, multicasting in MANETs become complex. The existing multicast routing protocols concentrate more on quality of service parameters like end‐to‐end delay, jitter, bandwidth and power. They do not stress on the scalability factor of the multicast. In this paper, we address the problem of multicast scalability and propose an efficient scalable multicast routing protocol called ‘Power Aware Scalable Multicast Routing Protocol (PASMRP)’ for MANETs. PASMRP uses the concept of class of service with three priority levels and local re‐routing to provide scalability. The protocol also ensures fair utilization of the resources among the nodes through re‐routing and hence the lifetime of the network is increased. The protocol has been simulated and the results show that PASMRP has better scalability and enhanced lifetime than the existing multicast routing protocols. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Power consumption is an important issue in the wireless ad hoc networking environment. In this paper, we present several energy-efficient routing algorithms using directional antennas for wireless ad hoc networks. These algorithms are simple to implement and are distributed and can be applied to mobile environments. We evaluate how directional antennas improve system throughput. We study the influence of the battery recovery effect and mobility on the network throughput during a network lifetime. We also present an algorithm that exploits the broadcast nature of the wireless communication environment to improve end-to-end bit error performance for a Rayleigh fading channel.  相似文献   

14.
Energy efficient broadcast routing in static ad hoc wireless networks   总被引:1,自引:0,他引:1  
In this paper, we discuss energy efficient broadcast in ad hoc wireless networks. The problem of our concern is: given an ad hoc wireless network, find a broadcast tree such that the energy cost of the broadcast tree is minimized. Each node in the network is assumed to have a fixed level of transmission power. We first prove that the problem is NP-hard and propose three heuristic algorithms, namely, shortest path tree heuristic, greedy heuristic, and node weighted Steiner tree-based heuristic, which are centralized algorithms. The approximation ratio of the node weighted Steiner tree-based heuristic is proven to be (1 + 2 ln(n - 1)). Extensive simulations have been conducted and the results have demonstrated the efficiency of the proposed algorithms.  相似文献   

15.
Approximate minimum-energy multicasting in wireless ad hoc networks   总被引:4,自引:0,他引:4  
A wireless ad hoc network consists of mobile nodes that are equipped with energy-limited batteries. As mobile nodes are battery-operated, an important issue in such a network is to minimize the total power consumption for each operation. Multicast is one of fundamental operations in any modern telecommunication network including wireless ad hoc networks. Given a multicast request consisting of a source node and a set of destination nodes, the problem is to build a minimum-energy multicast tree for the request such that the total transmission power consumption in the tree is minimized. Since the problem in a symmetric wireless ad hoc network is NP-complete, we instead devise an approximation algorithm with provable approximation guarantee. The approximation of the solution delivered by the proposed algorithm is within a constant factor of the best-possible approximation achievable unless P = NP.  相似文献   

16.
Wireless ad hoc and sensor networks are emerging with advances in electronic device technology, wireless communications and mobile computing with flexible and adaptable features. Routing protocols act as an interface between the lower and higher layers of the network protocol stack. Depending on the size of target nodes, routing techniques are classified into unicast, multicast and broadcast protocols. In this article, we give analysis and performance evaluation of tree‐based multicast routing in wireless sensor networks with varying network metrics. Geographic multicast routing (GMR) and its variations are used extensively in sensor networks. Multicast routing protocols considered in the analytical model are GMR, distributed GMR, demand scalable GMR, hierarchical GMR, destination clustering GMR and sink‐initiated GMR. Simulations are given with comparative analysis based on varying network metrics such as multicast group size, number of sink nodes, average multicast latency, number of clusters, packet delivery ratio, energy cost ratio and link failure rate. Analytical results indicate that wireless sensor network multicast routing protocols operate on the node structure (such as hierarchical, clustered, distributed, dense and sparse networks) and application specific parameters. Simulations indicate that hierarchical GMR is used for generic multicast applications and that destination clustering GMR and demand scalable GMR are used for distributed multicast applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In recent years, constructing a virtual backbone by nodes in a connected dominating set (CDS) has been proposed to improve the performance of ad hoc wireless networks. In general, a dominating set satisfies that every vertex in the graph is either in the set or adjacent to a vertex in the set. A CDS is a dominating set that also induces a connected sub‐graph. However, finding the minimum connected dominating set (MCDS) is a well‐known NP‐hard problem in graph theory. Approximation algorithms for MCDS have been proposed in the literature. Most of these algorithms suffer from a poor approximation ratio, and from high time complexity and message complexity. In this paper, we present a new distributed approximation algorithm that constructs a MCDS for wireless ad hoc networks based on a maximal independent set (MIS). Our algorithm, which is fully localized, has a constant approximation ratio, and O(n) time and O(n) message complexity. In this algorithm, each node only requires the knowledge of its one‐hop neighbours and there is only one shortest path connecting two dominators that are at most three hops away. We not only give theoretical performance analysis for our algorithm, but also conduct extensive simulation to compare our algorithm with other algorithms in the literature. Simulation results and theoretical analysis show that our algorithm has better efficiency and performance than others. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
An ad hoc network is a collection of nodes that do not need to rely on a predefined infrastructure to keep the network connected. Nodes communicate amongst each other using wireless radios and operate by following a peer‐to‐peer network model. In this article, we propose a multifold node authentication approach for protecting mobile ad hoc networks. The security requirements for protecting data link and network layers are identified and the design criteria for creating secure ad hoc networks using multiple authentication protocols are analysed. Such protocols, which are based on zero‐knowledge and challenge‐response techniques, are presented through proofs and simulation results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A mobile ad hoc network (MANET) is an autonomous collection of mobile nodes that communicate over relatively bandwidth‐constrained wireless links. MANETs need efficient algorithms to determine network connectivity, link scheduling, and routing. An important issue in network routing for MANETs is to conserve power while still achieve a high packet success rate. Traditional MANET routing protocols do not count for such concern. They all assume working with unlimited power reservoirs. Several ideas have been proposed for adding power‐awareness capabilities to ad hoc networks. Most of these proposals tackle the issue by either proposing new power‐aware routing protocols or modifying existing routing protocols through the deployment of power information as cost functions. None of them deal with counter‐measures that ought to be taken when nodes suffer from low power reserves and are subject to shut down in mid of normal network operations. In this paper, power‐awareness is added to a well‐known traditional routing protocol, the ad hoc on‐demand distance vector (AODV) routing protocol. The original algorithm is modified to deal with situations in which nodes experience low power reserves. Two schemes are proposed and compared with the original protocol using different performance metrics such as average end‐to‐end delays, transmission success rates, and throughputs. These schemes provide capabilities for AODV to deal with situations in which operating nodes have almost consumed their power reserves. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
ICAM: integrated cellular and ad hoc multicast   总被引:2,自引:0,他引:2  
In third generation (3G) wireless data networks, multicast throughput decreases with the increase in multicast group size, since a conservative strategy for the base station is to use the lowest data rate of all the receivers so that the receiver with the worst downlink channel condition can decode the transmission correctly. This paper proposes ICAM, integrated cellular and ad hoc multicast, to increase 3G multicast throughput through opportunistic use of ad hoc relays. In ICAM, a 3G base station delivers packets to proxy mobile devices with better 3G channel quality. The proxy then forwards the packets to the receivers through an IEEE 802.11-based ad hoc network. In this paper, we first propose a localized greedy algorithm that discovers for each multicast receiver the proxy with the highest 3G downlink channel rate. We discover that due to capacity limitations and interference of the ad hoc relay network, maximizing the 3G downlink data rate of each multicast receiver's proxy does not lead to maximum throughput for the multicast group. We then show that the optimal ICAM problem is NP-hard, and derive a polynomial-time 4-approximation algorithm for the construction of the multicast forest. This bound holds when the underlying wireless MAC supports broadcast or unicast, single rate or multiple rates (4(1 + /spl isin/) approximation scheme for the latter), and even when there are multiple simultaneous multicast sessions. Through both analysis and simulations, we show that our algorithms achieve throughput gains up to 840 percent for 3G downlink multicast with modest overhead on the 3G uplink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号