首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the T30923 antiproliferative potential and the contribution of its loop residues in six different human cancer cell lines by preparing five T30923 variants using the single residue replacement approach of loop thymidine with an abasic site mimic (S). G-rich oligonucleotides (GRO) show interesting anticancer properties because of their capability to adopt G-quadruplex structures (G4s), such as the G4 HIV-1 integrase inhibitor T30923. Considering the multi-targeted effects of G4-aptamers and the limited number of cancer cell lines tested, particularly for T30923, it should be important to find a suitable tumor line, in addition to considering that the effects also strictly depend on G4s. CD, NMR and non-denaturating polyacrylamide gel electrophoresis data clearly show that all modified ODNs closely resemble the dimeric structure of parallel G4s’ parent aptamer, keeping the resistance in biological environments substantially unchanged, as shown by nuclease stability assay. The antiproliferative effects of T30923 and its variants are tried in vitro by MTT assays, showing interesting cytotoxic activity, depending on time and dose, for all G4s, especially in MDA-MB-231 cells with a reduction in cell viability approximately up to 30%. Among all derivatives, QS12 results are the most promising, showing more pronounced cytotoxic effects both in MDA-MB-231 and Hela cells, with a decrease in cell viability from 70% to 60%. In summary, the single loop residue S substitution approach may be useful for designing antiproliferative G4s, considering that most of them, characterized by single residue loops, may be able to bind different targets in several cancer cell pathways. Generally, this approach could be of benefit by revealing some minimal functional structures, stimulating further studies aimed at the development of novel anticancer drugs.  相似文献   

2.
The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%–99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%–92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%–96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs.  相似文献   

3.
Ovarian cancer (OCa) is the deadliest gynecologic cancer. Emerging studies suggest ovarian cancer stem cells (OCSCs) contribute to chemotherapy resistance and tumor relapse. Recent studies demonstrated estrogen receptor beta (ERβ) exerts tumor suppressor functions in OCa. However, the status of ERβ expression in OCSCs and the therapeutic utility of the ERβ agonist LY500307 for targeting OCSCs remain unknown. OCSCs were enriched from ES2, OV90, SKOV3, OVSAHO, and A2780 cells using ALDEFLUOR kit. RT-qPCR results showed ERβ, particularly ERβ isoform 1, is highly expressed in OCSCs and that ERβ agonist LY500307 significantly reduced the viability of OCSCs. Treatment of OCSCs with LY500307 significantly reduced sphere formation, self-renewal, and invasion, while also promoting apoptosis and G2/M cell cycle arrest. Mechanistic studies using RNA-seq analysis demonstrated that LY500307 treatment resulted in modulation of pathways related to cell cycle and apoptosis. Western blot and RT-qPCR assays demonstrated the upregulation of apoptosis and cell cycle arrest genes such as FDXR, p21/CDKN1A, cleaved PARP, and caspase 3, and the downregulation of stemness markers SOX2, Oct4, and Nanog. Importantly, treatment of LY500307 significantly attenuated the tumor-initiating capacity of OCSCs in orthotopic OCa murine xenograft models. Our results demonstrate that ERβ agonist LY500307 is highly efficacious in reducing the stemness and promoting apoptosis of OCSCs and shows significant promise as a novel therapeutic agent in treating OCa.  相似文献   

4.
Birth asphyxia causes brain injury in neonates, but a fully successful treatment has yet to be developed. This study aimed to investigate the effect of group II mGlu receptors activation after experimental birth asphyxia (hypoxia-ischemia) on the expression of factors involved in apoptosis and neuroprotective neurotrophins. Hypoxia-ischemia (HI) on 7-day-old rats was used as an experimental model. The effects of intraperitoneal application of mGluR2 agonist LY379268 (5 mg/kg) and the specific mGluR3 agonist NAAG (5 mg/kg) (1 h or 6 h after HI) on apoptotic processes and initiation of the neuroprotective mechanism were investigated. LY379268 and NAAG applied shortly after HI prevented brain damage and significantly decreased pro-apoptotic Bax and HtrA2/Omi expression, increasing expression of anti-apoptotic Bcl-2. NAAG or LY379268 applied at both times also decreased HIF-1α formation. HI caused a significant decrease in BDNF concentration, which was restored after LY379268 or NAAG administration. HI-induced increase in GDNF concentration was decreased after administration of LY379268 or NAAG. Our results show that activation of mGluR2/3 receptors shortly after HI prevents brain damage by the inhibition of excessive glutamate release and apoptotic damage decrease. mGluR2 and mGluR3 agonists produced comparable results, indicating that both receptors may be a potential target for early treatment in neonatal HI.  相似文献   

5.
Generation of organoids from urinary tract tumor samples was pioneered a few years ago. We generated organoids from two upper tract urothelial carcinomas and from one bladder cancer sample, and confirmed the expression of cytokeratins as urothelial antigens, vimentin as a mesenchymal marker, and fibroblast growth factor receptor 3 by immunohistochemistry. We investigated the dose response curves of two novel components, venetoclax versus S63845, in comparison to the clinical standard cisplatin in organoids in comparison to the corresponding two-dimensional cultures. Normal urothelial cells and tumor lines RT4 and HT1197 served as controls. We report that upper tract urothelial carcinoma cells and bladder cancer cells in two-dimensional cultures yielded clearly different sensitivities towards venetoclax, S63845, and cisplatin. Two-dimensional cultures were more sensitive at low drug concentrations, while organoids yielded higher drug efficacies at higher doses. In some two-dimensional cell viability experiments, colorimetric assays yielded different IC50 toxicity levels when compared to chemiluminescence assays. Organoids exhibited distinct sensitivities towards cisplatin and to a somewhat lesser extent towards venetoclax or S63845, respectively, and significantly different sensitivities towards the three drugs investigated when compared to the corresponding two-dimensional cultures. We conclude that organoids maintained inter-individual sensitivities towards venetoclax, S63845, and cisplatin. The preclinical models and test systems employed may bias the results of cytotoxicity studies.  相似文献   

6.
The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in one-third of patients with de novo acute myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling via AKT kinase, MAP kinases, and STAT5. FLT3 inhibitors have been approved for the treatment of FLT3-mutated AML. However, treatment response to FLT3 inhibitors may be short-lived, and resistance may emerge. Compounds targeting STAT5 may enhance and prolong effects of FLT3 inhibitors in this subset of patients with FLT3-mutated AML. Here STAT5-inhibitor AC-4-130, FLT3 inhibitor midostaurin (PKC412), BMI-1 inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor S63845, and BCL-2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Synergistic effects on cell viability were detected in both FLT3-mutated and FLT3-wild-type AML cells treated with AC-4-130 in combination with the MCL1 inhibitor S63845. AML patient samples with a strong response to AC-4-130 and S63845 combination treatment were characterized by mutated FLT3 or mutated TET2 genes. Susceptibility of AML cells to AC-4-130, PTC596, trametinib, PKC412, and venetoclax was altered in the presence of HS-5 stroma. Only the MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or presence of bone marrow stroma. The combination of the STAT5-inhibitor AC-4-130 and the MCL1 inhibitor S63845 may be an effective treatment targeting FLT3-mutated or TET2-mutated AML.  相似文献   

7.
Canine parvovirus 2 (CPV-2) was first identified in 1978, and is responsible for classic parvoviral enteritis. Despite the widespread vaccination of domestic carnivores, CPVs have remained important pathogens of domestic and wild carnivores. In this study, we isolated CPV-2 from Tibetan mastiffs and performed a global analysis of the complete VP2 gene sequences of CPV-2 strains in China. Six isolates were typed as new CPV-2a, according to key amino acid positions. On a phylogenetic tree, these six sequences formed a distinct clade. Five isolates occurred on the same branch as KF785794 from China and GQ379049 from Thailand; CPV-LS-ZA1 formed a separate subgroup with FJ435347 from China. One hundred ninety-eight sequences from various parts of China and the six sequences isolated here formed seven distinct clusters, indicating the high diversity of CPVs in China. Of 204 VP2 sequences, 183 (91.04%) encoded the mutation Ser297Ala, regardless of the antigenic type, implying that most Chinese CPV-2 strains contain the VP2 mutation Ser297Ala. However, the biological significance of this change from prototype CPV-2a/2b to new CPV-2a/2b types remains unclear. This study is the first to isolate new CPV-2a from the Tibetan mastiff. Our data show that new CPV-2a/2b variants are now circulating in China.  相似文献   

8.
Bud endodormancy is an important, complex process subject to both genetic and epigenetic control, the mechanism of which is still unclear. The endogenous hormone abscisic acid (ABA) and its signaling pathway play important roles in the endodormancy process, in which the type 2C protein phosphatases (PP2Cs) is key to the ABA signal pathway. Due to its excellent effect on endodormancy release, hydrogen cyanamide (HC) treatment is considered an effective measure to study the mechanism of endodormancy release. In this study, RNA-Seq analysis was conducted on endodormant floral buds of pear (Pyrus pyrifolia) with HC treatment, and the HC-induced PP2C gene PpPP2C1 was identified. Next, software prediction, expression tests and transient assays revealed that lncRNA PpL-T31511-derived Pp-miRn182 targets PpPP2C1. The expression analysis showed that HC treatment upregulated the expression of PpPP2C1 and downregulated the expression of PpL-T31511 and Pp-miRn182. Moreover, HC treatment inhibited the accumulation of ABA signaling pathway-related genes and hydrogen peroxide (H2O2). Furthermore, overexpression of Pp-miRn182 reduced the inhibitory effect of PpPP2C1 on the H2O2 content. In summary, our study suggests that downregulation of PpL-T31511-derived Pp-miRn182 promotes HC-induced endodormancy release in pear plants through the PP2C-H2O2 pathway.  相似文献   

9.
Melatonin receptors have been studied for several decades. The low expression of the receptors in tissues led the scientific community to find a substitute for the natural hormone melatonin, the agonist 2-[125I]-iodomelatonin. Using the agonist, several hundreds of studies were conducted, including the discovery of agonists and antagonists for the receptors and minute details about their molecular behavior. Recently, we attempted to expand the panel of radioligands available for studying the melatonin receptors by using the newly discovered compounds SD6, DIV880, and S70254. These compounds were characterized for their affinities to the hMT1 and hMT2 recombinant receptors and their functionality in the classical GTPγS system. SD6 is a full agonist, equilibrated between the receptor isoforms, whereas S70254 and DIV880 are only partial MT2 agonists, with Ki in the low nanomolar range while they have no affinity to MT1 receptors. These new tools will hopefully allow for additions to the current body of information on the native localization of the receptor isoforms in tissues.  相似文献   

10.
Recent studies revealed that the activation of serotonergic 5-HT1A and muscarinic M1, M4, or M5 receptors prevent MK-801-induced cognitive impairments in animal models. In the present study, the effectiveness of the simultaneous activation of 5-HT1A and muscarinic receptors at preventing MK-801-induced cognitive deficits in novel object recognition (NOR) or Y-maze tests was investigated. Activators of 5-HT1A (F15599), M1 (VU0357017), M4 (VU0152100), or M5 (VU0238429) receptors administered at top doses for seven days reversed MK-801-induced deficits in the NOR test, similar to the simultaneous administration of subeffective doses of F15599 (0.05 mg/kg) with VU0357017 (0.15 mg/kg), VU0152100 (0.05 mg/kg), or VU0238429 (1 mg/kg). The compounds did not prevent the MK-801-induced impairment when administered acutely. Their activity was less evident in the Y-maze. Pharmacokinetic studies revealed high brain penetration of F15599 (brain/plasma ratio 620%), which was detected in the frontal cortex (FC) up to 2 h after administration. Decreases in the brain penetration properties of the compounds were observed after acute administration of the combinations, which might have influenced behavioral responses. This negative effect on brain penetration was not observed when the compounds were administered repeatedly. Based on our results, prolonged administration of a 5-HT1A activator with muscarinic receptor ligands may be effective at reversing cognitive decline related to schizophrenia, and the FC may play a critical role in this interaction.  相似文献   

11.
1-Deoxy-d-xylulose-5-phosphate synthase (DXS) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) genes are the key enzyme genes of terpenoid biosynthesis but still unknown in Tripterygium wilfordii Hook. f. Here, three full-length cDNA encoding DXS1, DXS2 and DXR were cloned from suspension cells of T. wilfordii with ORF sizes of 2154 bp (TwDXS1, GenBank accession no.KM879187), 2148 bp (TwDXS2, GenBank accession no.KM879186), 1410 bp (TwDXR, GenBank accession no.KM879185). And, the TwDXS1, TwDXS2 and TwDXR were characterized by color complementation in lycopene accumulating strains of Escherichia coli, which indicated that they encoded functional proteins and promoted lycopene pathway flux. TwDXS1 and TwDXS2 are constitutively expressed in the roots, stems and leaves and the expression level showed an order of roots > stems > leaves. After the suspension cells were induced by methyl jasmonate, the mRNA expression level of TwDXS1, TwDXS2, and TwDXR increased, and triptophenolide was rapidly accumulated to 149.52 µg·g−1, a 5.88-fold increase compared with the control. So the TwDXS1, TwDXS2, and TwDXR could be important genes involved in terpenoid biosynthesis in Tripterygium wilfordii Hook. f.  相似文献   

12.
Lethal autophagy is a pathway leading to neuronal death caused by transient global ischemia. In this study, we examined the effect of Ginsenoside Rb1 (GRb1) on ischemia/reperfusion-induced autophagic neuronal death and investigated the role of PI3K/Akt. Ischemic neuronal death in vitro was induced by using oxygen glucose deprivation (OGD) in SH-SY5Y cells, and transient global ischemia was produced by using two vessels occlusion in rats. Cellular viability of SH-SY5Y cells was assessed by MTT assay, and CA1 neuronal death was evaluated by Hematoxylin-eosin staining. Autophagic vacuoles were detected by using both fluorescent microscopy in combination with acridine orange (AO) and Monodansylcadaverine (MDC) staining and transmission electronic microscopy. Protein levels of LC3II, Beclin1, total Akt and phosphor-Akt at Ser473 were examined by western blotting analysis. GRb1 inhibited both OGD and transient ischemia-induced neuronal death and mitigated OGD-induced autophagic vacuoles in SH-SY5Y cells. By contrast, PI3K inhibitor LY294002 counteracted the protection of GRb1 against neuronal death caused by either OGD or transient ischemia. LY294002 not only mitigated the up-regulated protein level of phosphor Akt at Ser473 caused by GRb1, but also reversed the inhibitory effect of GRb1 on OGD and transient ischemia-induced elevation in protein levels of LC3II and Beclin1.  相似文献   

13.
Panax ginseng is a famous herbal medicine widely used in Asia. Ginsenosides have been identified as the principle active ingredients for Panax ginseng’s biological activity, among which ginsenoside Rd (Rd) attracts extensive attention for its obvious neuroprotective activities. Here we investigated the effect of Rd on neurite outgrowth, a crucial process associated with neuronal repair. PC12 cells, which respond to nerve growth factor (NGF) and serve as a model for neuronal cells, were treated with different concentrations of Rd, and then their neurite outgrowth was evaluated. Our results showed that 10 μM Rd significantly increased the percentages of long neurite- and branching neurite-bearing cells, compared with respective controls. The length of the longest neurites and the total length of neurites in Rd-treated PC12 cells were much longer than that of respective controls. We also showed that Rd activated ERK1/2 and AKT but not PKC signalings, and inhibition of ERK1/2 by PD98059 or/and AKT by LY294002 effectively attenuated Rd-induced neurite outgrowth. Moreover, Rd upregulated the expression of GAP-43, a neuron-specific protein involved in neurite outgrowth, while PD98059 or/and LY294002 decreased Rd-induced increased GAP-43 expression. Taken together, our results provided the first evidence that Rd may promote the neurite outgrowth of PC12 cells by upregulating GAP-43 expression via ERK- and ARK-dependent signaling pathways.  相似文献   

14.
Uncontrolled proliferative diseases, such as fibrosis or cancer, can be fatal. We previously found that a compound containing the chromone scaffold (CS), ONG41008, had potent antifibrogenic effects associated with EMT or cell-cycle control resembling tumorigenesis. We investigated the effects of ONG41008 on tumor cells and compared these effects with those in pathogenic myofibroblasts. Stimulation of A549 (lung carcinoma epithelial cells) or PANC1 (pancreatic ductal carcinoma cells) with ONG41008 resulted in robust cellular senescence, indicating that dysregulated cell proliferation is common to fibrotic cells and tumor cells. The senescence was followed by multinucleation, a manifestation of mitotic slippage. There was significant upregulation of expression and rapid nuclear translocation of p-TP53 and p16 in the treated cancer cells, which thereafter died after 72 h confirmed by 6 day live imaging. ONG41008 exhibited a comparable senogenic potential to that of dasatinib. Interestingly, ONG41008 was only able to activate caspase-3, 7 in comparison with quercetin and fisetin, also containing CS in PANC1. ONG41008 did not seem to be essentially toxic to normal human lung fibroblasts or primary prostate epithelial cells, suggesting ONG41008 can distinguish the intracellular microenvironment between normal cells and aged or diseased cells. This effect might occur as a result of the increased NAD/NADH ratio, because ONG41008 restored this important metabolic ratio in cancer cells. Taken together, this is the first study to demonstrate that a small molecule can arrest uncontrolled proliferation during fibrogenesis or tumorigenesis via both senogenic and senolytic potential. ONG41008 could be a potential drug for a broad range of fibrotic or tumorigenic diseases.  相似文献   

15.
Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H2O2. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H2O2. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H2O2-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H2O2, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H2O2 insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations.  相似文献   

16.
Motor neuron diseases (MNDs) include sporadic and hereditary neurological disorders characterized by progressive degeneration of motor neurons (MNs). Sigma-1 receptor (Sig-1R) is a protein enriched in MNs, and mutations on its gene lead to various types of MND. Previous studies have suggested that Sig-1R is a target to prevent MN degeneration. In this study, two novel synthesized Sig-1R ligands, coded EST79232 and EST79376, from the same chemical series, with the same scaffold and similar physicochemical properties but opposite functionality on Sig-1R, were evaluated as neuroprotective compounds to prevent MN degeneration. We used an in vitro model of spinal cord organotypic cultures under chronic excitotoxicity and two in vivo models, the spinal nerve injury and the superoxide dismutase 1 (SOD1)G93A mice, to characterize the effects of these Sig-1R ligands on MN survival and modulation of glial reactivity. The antagonist EST79376 preserved MNs in vitro and after spinal nerve injury but was not able to improve MN death in SOD1G93A mice. In contrast, the agonist EST79232 significantly increased MN survival in the three models of MN degeneration evaluated and had a mild beneficial effect on motor function in SOD1G93A mice. In vivo, Sig-1R ligand EST79232 had a more potent effect on preventing MN degeneration than EST79376. These data further support the interest in Sig-1R as a therapeutic target for neurodegeneration.  相似文献   

17.
The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628), which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L) with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed.  相似文献   

18.
Palmoplantar keratodermas (PPKs) are characterized by thickness of stratum corneum and epidermal hyperkeratosis localized in palms and soles. PPKs can be epidermolytic (EPPK) or non epidermolytic (NEPPK). Specific mutations of keratin 16 (K16) and keratin 1 (K1) have been associated to EPPK, and NEPPK. Cases of mosaicism in PPKs due to somatic keratin mutations have also been described in scientific literature. We evaluated a patient presenting hyperkeratosis localized monolaterally in the right palmar area, characterized by linear yellowish hyperkeratotic lesions following the Blaschko lines. No other relatives of the patient showed any dermatological disease. Light and confocal histological analysis confirmed the presence of epidermolityic hyperkeratosis. Genetic analysis performed demonstrates the heterozygous deletion NM_006121.4:r.274_472del for a total of 198 nucleotides, in KRT1 cDNA obtained by a palmar lesional skin biopsy, corresponding to the protein mutation NP_006112.3:p.Gly71_Gly137del. DNA extracted from peripheral blood lymphocytes did not display the presence of the mutation. These results suggest a somatic mutation causing an alteration in K1 N-terminal variable domain (V1). The deleted sequence involves the ISIS subdomain, containing a lysine residue already described as fundamental for epidermal transglutaminases in the crosslinking of IF cytoskeleton. Moreover, a computational analysis of the wild-type and V1-mutated K1/K10 keratin dimers, suggests an unusual interaction between these keratin filaments. The mutation taster in silico analysis also returned a high probability for a deleterious mutation. These data demonstrate once again the importance of the head domain (V1) of K1 in the formation of a functional keratinocyte cytoskeleton. Moreover, this is a further demonstration of the presence of somatic mutations arising in later stages of the embryogenesis, generating a mosaic phenotype.  相似文献   

19.
PIEZO1 is a mechano-sensitive ion channel that can sense various forms of mechanical stimuli and convert them into biological signals, affecting bone-related diseases. The present study aimed to identify key genes and signaling pathways in Piezo1-regulated bone-related diseases and to explain the potential mechanisms using bioinformatic analysis. The differentially expressed genes (DEGs) in tendon, femur, and humerus bone tissue; cortical bone; and bone-marrow-derived macrophages were identified with the criteria of |log2FC| > 1 and adjusted p-value < 0.05 analysis based on a dataset from GSE169261, GSE139121, GSE135282, and GSE133069, respectively, and visualized in a volcano plot. Venn diagram analyses were performed to identify the overlapping DEGs expressed in the above-mentioned tissues. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein–protein interaction (PPI) analysis, and module analysis were also conducted. Furthermore, qRT-PCR was performed to validate the above results using primary chondrocytes. As a result, a total of 222 overlapping DEGs and 12 mostly overlapping DEGs were identified. Key Piezo1-related genes, such as Lcn2, Dkk3, Obscn, and Tnnt1, were identified, and pathways, such as Wnt/β-catenin and PI3k-Akt, were also identified. The present informatic study provides insight, for the first time, into the potential therapeutic targets of Piezo1-regulated bone-related diseases  相似文献   

20.
Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号