首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homogenous nanocomposite films of UV/O3 oxidized multiwall carbon nanotubes (MWCNTs) subsequently modified with aniline moiety were synthesized with polymethylmethacrylate (PMMA) through free radical polymerization. The phenylamine functional groups present on the surface of MWCNTs providing an anchoring sites for deposition of Ag metal nanoparticles (NP).The in situ free radical polymerization of MMA in the presence of these well dispersed nanotubes gave a new class of radiation resistant nanocomposite films. The synthesized materials were characterized by FT‐IR, TGA, TEM, EDX, TC, DMA, universal testing machine, and optical microscopy to ascertain their structural morphologies, thermal stability, and mechanical strength. The microscopic and structural properties reflect the homogenous mixing of modified MWCNTs in polymer matrix contributing in enhancement of thermal stability, thermo‐mechanical strength, glass transition temperatures, and thermal conductivity of nanocomposites even at 0.25 wt% addition of modified nanofiller. Thermal and thermo‐mechanical behavior of pre‐ and post‐UV/O3 irradiated nanocomposite films have been compared with neat polymer. The results revealed that modified nanofiller network can effectively disperse the radiation and has a dramatic reinforcement effect on the nature of degradation of PMMA matrix. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
UV/O3 radiation and chemical resistant nanocomposite films of functionalized/metal decorated multiwall carbon nanotubes (MWCNTs) with polymethylmethacrylate (PMMA) are synthesized. Silver nanoparticles are decorated on the surface of UV/O3 functionalized MWCNTs by both reduction and in situ growth from AgNO3 aqueous solution. Microscopic studies reflect the better dispersion of UV/O3 functionalized/silver decorated MWCNTs in polymer matrix contributing in enhancement of thermal stability, thermomechanical strength, glass transition temperatures, and thermal conductivity of nanocomposites even at 0.25 wt% MWCNTs additions. The thermal stability of nanocomposite film (0.25 wt% loading), prepared by using a surfactant (Sodium dodecyl sulfate) is increased to about 27°C while the thermomechanical properties are raised up to 76% at 100°C. Thermal and thermomechanical behavior of pre‐ and post‐UV/O3 irradiated nanocomposite films are compared with neat polymer. The results reveal that UV/O3 functionalized MWCNTs can effectively disperse the radiation and have a dramatic reinforcement effect on the nature of the degradation of PMMA matrix. POLYM. COMPOS., 36:969–978, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
A branched random copolymer, poly[(hydroxyethyl acrylate)‐r‐(N‐vinylcarbazole)] (BPHNV), was synthesized through a facile one‐pot free radical polymerization with hydroxyethyl acrylate and N‐vinylcarbazole monomers, using 4‐vinylmethylmercaptan as the chain transfer agent. BPHNV was employed to noncovalently modify multiwall carbon nanotubes (MWCNTs) by π–π interaction. The as‐modified MWCNTs were then incorporated into epoxy resin to improve the thermal conductivity and mechanical properties of epoxy thermosets. The results suggest that, due to both the conjugation structure and the epoxy‐philic component, BPHNV could form a polymer layer on the wall of MWCNTs and inhibit entanglement, helping the uniform dispersion of MWCNTs in epoxy matrix. Owing to the unprecedented thermal conductivity of MWCNTs and the enhancement in the interfacial interaction between fillers and matrix, the thermal conductivity of epoxy/MWCNTs/BPHNV composites increases by 78% at extremely low filler loadings, while the electrical resistivity is still maintained on account of the insulating polymer layer. Meanwhile, the mechanical properties and glass transition temperature (Tg) of the thermosets are elevated effectively, with no significant decrease occurring to the modulus. The addition of as little as 0.1 wt% of MWCNTs decorated with 1.0 wt% of BPHNV to an epoxy matrix affords a great increase of 130% in impact strength for the epoxy thermosets, as well as an increase of over 13 °C in Tg. © 2018 Society of Chemical Industry  相似文献   

4.
The present investigation reports the preparation and characterization of the thermally stable poly(vinyl alcohol)/(poly(amide-imide)-SiO2) nanocomposite (PVA/PAI-SiO2 NC) films. For this reason, the surface of SiO2 nanoparticles (NPs) was modified with N-trimellitylimido-l-methionine and subsequently, 5 wt.% of modified SiO2 NPs were dispersed in the PAI matrix via sonochemical reaction. The resulting NC was studied by different techniques. Finally, the PAI-SiO2 NC was employed as nanofiller and was incorporated into the PVA matrix for the enhancement of its mechanical and thermal properties. The synthesized NCs were studied by Fourier transform infrared and X-ray diffraction spectroscopy analysis. The surface topography and morphology of the NCs were studied by atomic force microscopy techniques, field emission scanning electron microscopy and transmission electron microscopy. The micrographs demonstrated that the nanofillers were homogeneously dispersed in the PVA matrix. The thermo gravimetric analysis curves indicated that the thermal decomposition of the PVA/PAI-SiO2 NC films shifted toward higher temperature in comparison with the pure PVA. The effect of nanofiller on the mechanical properties of NC films was also explored.  相似文献   

5.
The introduction of carbon nanotubes in a polymer matrix can markedly improve its mechanical properties and electrical conductivity, and much effort has been devoted to achieve homogeneous dispersions of carbon nanotubes in various polymers. Our group previously performed successfully fluorine‐grafted modification on the sidewalls of multi‐walled carbon nanotubes (MWCNTs), using homemade equipment for CF4 plasma irradiation. As a continuation of our previous work, in the present study CF4 plasma‐treated MWCNTs (F‐MWCNTs) were used as a nanofiller with poly(ethylene terephthalate) (PET), which is a practical example of the application of such F‐MWCNTs to prepare polyester/MWCNTs nanocomposites with ideal nanoscale structure and excellent properties. As confirmed from scanning electron microscopy observations, the F‐MWCNTs could easily be homogeneously dispersed in the PET matrix during the in situ polymerization preparation process. It was found that a very low content of F‐MWCNTs dramatically altered the crystallization behavior and mechanical properties of the nanocomposites. For example, a 15 °C increase in crystallization temperature was achieved by adding only 0.01 wt% F‐MWCNTs, implying that the well‐dispersed F‐MWCNTs act as highly effective nucleating agents to initiate PET crystallization at high temperature. Meanwhile, an abnormal phenomenon was found in that the melt point of the nanocomposites is lower than that of the pure PET. The mechanism of the tailoring of the properties of PET resin by incorporation of F‐MWCNTs is discussed, based on structure–property relationships. The good dispersion of the F‐MWCNTs and strong interfacial interaction between matrix and nanofiller are responsible for the improvement in mechanical properties and high nucleating efficiency. The abnormal melting behavior is attributed to the recrystallization transition of PET occurring at the early stage of crystal melting being retarded on incorporation of F‐MWCNTs. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
Multiwalled carbon nanotubes (MWCNTs) were considered as ideal filler in a polymer matrix due to their outstanding mechanical, electrical and thermal properties. This article describes a simple route to preparation of nanocomposite (NC) of chitosan and modified MWCNT by solution casting method. The process involves modification of MWCNT with dopamine and effects of modified MWCNT on dispersion, mechanical, thermal and morphological properties. Atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, have been used to characterize the NCs. Scanning electron micrographs showed that in all of the NC films, except chitosan/MWCNT-Dop NC 7 wt%, MWCNT were dispersed homogeneously throughout the chitosan matrix. The XRD studies showed that the crystallinity of composite films decreases through hydrogen bonding between chitosan and MWCNT-Dop. The determination of mechanical and thermal properties demonstrated that the NC films exhibited significant enhancement in strength, modulus, and thermal stability compared with the pure chitosan.  相似文献   

7.
Polymeric nanocomposites were synthesized from functionalized soybean‐oil‐based polymer matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Acrylated epoxidized soybean oil combined with styrene was used as the monomer. Organophilic MMT (OrgMMT) was obtained using a quaternized derivative of methyl oleate, which was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized using X‐ray diffraction and atomic force microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated using thermogravimetric analysis and dynamic mechanical analysis. It was found that the desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt%, whereas a partially exfoliated or intercalated nanocomposite was obtained for 3 wt% loading. All the nanocomposites were found to have improved thermal and mechanical properties as compared with virgin acrylated epoxidized soybean‐oil‐based polymer matrix. The nanocomposite containing 2 wt% OrgMMT clay was found to have the highest thermal stability and best dynamic mechanical performance. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Electrical, mechanical, and thermal properties of the poly(methyl methacrylate) (PMMA) composites containing functionalized multiwalled carbon nanotubes (f‐MWCNTs) and reduced graphene oxide (rGO) hybrid nanofillers have been investigated. The observed electrical percolation threshold of FHC is 0.8 wt% with maximum conductivity of 1.21 × 10?3 S/cm at 4 wt% of f‐MWCNTs. The electrical transport mechanism and magneto resistance studied of hybrid composites have also been investigated. Progressive addition of f‐MWCNTs in rGO/PMMA composite results increase in mechanical (tensile strength and Young's modulus) and thermal (thermal stability) properties of f‐MWCNTs‐rGO/PMMA hybrid nanocomposites (FHC). The increased mechanical properties are due to the efficient load transfer from PMMA matrix to f‐MWCNTs and rGO through better chemical interaction. The strong interaction between PMMA and f‐MWCNTs‐rGO in FHC is the main cause for improved thermal stability. POLYM. ENG. SCI., 59:1075–1083, 2019. © 2019 Society of Plastics Engineers  相似文献   

9.
A number of batch polymerizations were performed to study the effect of multi‐walled carbon nanotubes (MWCNTs) on the properties of PMMA/MWCNTs nanocomposites. To improve the dispersion of nanotubes in PMMA matrix, MWCNTs were functionalized with methacrylate groups via a four‐step modification process and the modified nanoparticles were used to synthesize the nanocomposites. The prepared samples were characterized by Raman spectroscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, differential scanning calorimetry, gel permeation chromatography, UV–visible, and TEM techniques. According to the results, modified nanotubes improved thermal and mechanical properties better than the pristine MWCNTs. The main improvement in the mechanical and thermophysical properties was achieved for the nanocomposite containing 0.5 wt% of MWCNTs. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by a new one‐pot technique, where the hydrophilic Na‐MMT layers were decorated with hydrophobic 1‐dodecyl‐3‐methylimidazolium hexafluorophosphate (C12mimPF6) ionic liquid in situ during melt blending with PMMA and intercalation of polymer chains took place subsequently. The in situ modification and intercalation of Na‐MMT were confirmed using X‐ray diffraction and transmission electron microscopy. The combination of the compatible C12mimPF6 with PMMA and the good dispersion of MMT layers at the nanoscale rendered the resultant PMMA/MMT nanocomposites with improved optical transparency, thermal stability and mechanical properties. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
Nanocomposites of poly(methyl methacrylate) (PMMA) filled with 3 wt% of modified natural Algerian clay (AC; montmorillonite type) were prepared by either in situ polymerization of methyl methacrylate initiated by 2,2′‐azobisisobutyronitrile or a melt‐mixing process with preformed PMMA via twin‐screw extrusion. The organo‐modification of the AC montmorillonite was achieved by ion exchange of Na+ with octadecyldimethylhydroxyethylammonium bromide. Up to now, this AC montmorillonite has found applications only in the petroleum industry as a rheological additive for drilling muds and in water purification processes; its use as reinforcement in polymer matrices has not been reported yet. The modified clay was characterized using X‐ray diffraction (XRD), which showed an important shift of the interlayer spacing after organo‐modification. The degree of dispersion of the clay in the polymer matrix and the resulting morphology of nanocomposites were evaluated using XRD and transmission electron microscopy. The resulting intercalated PMMA nanocomposites were analysed using thermogravimetric analysis and differential scanning calorimetry. The glass transition temperature of the nanocomposites was not significantly influenced by the presence of the modified clay while the thermal stability was considerably improved compared to unfilled PMMA. This Algerian natural montmorillonite can serve as reinforcing nanofiller for polymer matrices and is of real interest for the fabrication of nanocomposite materials with improved properties. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
R. Sharma  A. Sil  S. Ray 《Polymer Composites》2016,37(6):1936-1944
Polymer‐based electrolyte of lithium ion batteries and other devices have shortcomings of low ionic conductivity and inadequate mechanical strength. The study presents the preparation of polymethyl methacrylate (PMMA)‐based three‐layered nanocomposite gel polymer electrolytes (NCGPEs) having multiwalled carbon nanotubes (MWCNTs) dispersed in the middle layer of the composites and the effect of dispersoid quantities on the ionic, mechanical, and thermal characteristics of the electrolytes. The NCGPEs were synthesized by solution cast process with the various MWCNTs contents of 0.5, 1.0, 1.5, and 2.0 wt%. Morphology of the NCGPEs has been observed by scanning and transmission electron microscopes (SEMs). Interactions between the constituents of the composite and structural changes of the base polymer were investigated by Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) techniques. The mechanical strength of the NCGPEs increases considerably owing to the dispersion of MWCNTs and the highest strength was found for the dispersion of 2.0 wt% of MWCNTs. The thermal stability of the nanocomposites was investigated by thermo‐gravimetric analysis (TGA). The chemical decomposition temperature of the nanocomposites increases considerably as compared to the gel polymer electrolyte. Ionic conductivity of the composite electrolyte increases with the increase in addition of MWCNTs and the maximum ionic conductivity (10−3 S cm−1) of the nanocomposite has been found with the dispersion of 2.0 wt% MWCNTs among all the dispersoid. POLYM. COMPOS., 37:1936–1944, 2016. © 2015 Society of Plastics Engineers  相似文献   

13.
Nanocomposite films of polystyrene (PS) and poly(methyl methacrylate) (PMMA) were prepared by loading four variations of fullerenes such as pristine C60, multiarylated [60]fullerenes with tolyl (tolyl‐C60) and phenol groups (phenol‐C60), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The TGA analysis showed no appreciable change in their thermal and thermo‐oxidative stabilities for PS/tolyl‐C60 and PS/phenol‐C60 films, but significant improvement up to +45°C for PS/C60 and PS/PCBM films even under air. The thermo‐oxidative stability of PMMA/phenol‐C60 and PMMA/PCBM, however, exhibited slightly larger improvements over that of PMMA/C60. We believe that the radical‐scavenging ability of π‐conjugative fullerenes and the dispersibility of fullerene–polymer combinations play key roles in these enhancements. We also found that optimal loading occurred at a relatively low content of fullerenes (0.4–0.8 wt%) probably because larger amounts may interfere with the morphological interaction of polymer chains which is essential for the thermal persistency of polymer. POLYM. COMPOS. 37:1143–1151, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
Nanofibers of Al2O3 (commercial product NafenTM) with characteristic length of ~100 nm and diameter of ~10 nm were used to create new hybrid materials based on copolymer of ethylene and propylene. Nanocomposites were obtained by in situ catalytic copolymerization on the system rac‐Et(2‐MeInd)2ZrMe2/isobutylalumoxane. Formation of the nanocomposites with uniform distribution of Nafen nanoparticles in polymer matrix was confirmed by scanning and transmission electron microscopy. According to dynamic mechanical analysis data, introduction of the nanofiller in an amount of up to 3 wt % leads to an increase in glass transition temperature by 10 °C (E″) and by 21 °C (tan δ). The nanocomposites exhibit improved physico‐mechanical properties (tensile strength and elongation at break). It is shown that the nanofiller significantly improves resistance of the nanocomposite to the thermo‐oxidative and thermal degradation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44678.  相似文献   

15.
Polymer materials with embedded silver (Ag) nanoparticle (NP) are of considerable interest owing to their enhanced antimicrobial activity and physical properties compared to host polymer. Antimicrobial and thermally/oxidatively stable coating not only enhances the durability of the coated material but also reduces the growth of bacteria/fungus and thus reduces the chance of infection. For this purpose, we have prepared polydimethylsiloxane‐containing predominantly poly(meth)acrylates‐based pentablock thermoplastic elastomer (TPE)/gold (Au)–Ag alloy nanocomposites (NCs) with antimicrobial activity and enhanced physical properties. In situ simultaneous reduction of appropriate amount of metal salts in the presence of block copolymer produced Au–Ag NPs of size 5–10 nm. Such embedded 5–10 nm sized particles (loading, 0.1–0.2 wt%) improved the mechanical property, thermal/oxidative stability, and antimicrobial activity of the NCs. The NC films also exhibited tunable surface wetting behavior and optical properties. The NC films showed low level of Ag leaching as confirmed by inductively coupled plasma spectrometer and UV–visible spectroscopy. Improved thermal/oxidative resistance of the TPE/Au–Ag alloy NCs enhanced antimicrobial activity, together with low level of leaching characteristic of the embedded NPs deemed suitable for further use of these NCs material for antimicrobial and oxidatively stable coating applications. POLYM. COMPOS., 36:2103–2112, 2015. © 2014 Society of Plastics Engineer  相似文献   

16.
The environmentally friendly esterification of acetosolv lignin (AL), obtained from pressed oil palm mesocarp fibers, is described, for the improvement of thermo‐oxidative properties of poly(methyl methacrylate) (PMMA) films. Acetylation of AL was performed in ecofriendly conditions using acetic anhydride in the absence of catalysts. Acetylated acetosolv lignin (AAL) was successfully obtained in only 12 min with a solvent‐free and catalyst‐free microwave‐assisted procedure. Lignins were characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), confirming the efficacy of the methodology employed. AL and AAL as fillers in different concentrations (1% and 5%) were added to PMMA films. The thermal and mechanical properties of the lignin‐incorporated films were analyzed by TGA, DSC, and dynamic mechanical analysis (DMA). The films incorporated with lignin and acetylated lignin presented initial degradation temperature (Tonset) and onset oxidative temperature (OOT) values higher than pure PMMA films, contributing thus to an enhancement of thermo‐oxidative stability of PMMA. The DMA analyses showed that incorporation of AL or AAL increased the storage modulus (E′) of PMMA films, but did not affect their glass‐transition temperatures (Tg). The results indicate the potential use of oil palm mesocarp lignin to enhance the thermo‐oxidative properties of PMMA without compromising its mechanical response. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45498.  相似文献   

17.
Today, we stand at the threshold of exploring carbon nanotube (CNT) based conducting polymer nanocomposites as a new paradigm for the next generation multifunctional materials. However, irrespective of the reported methods of composite preparation, the use of CNTs in most polymer matrices to date has been limited by challenges in processing and insufficient dispersability of CNTs without chemical functionalization. Thus, development of an industrially feasible process for preparation of polymer/CNT conducting nanocomposites at very low CNT loading is essential prior to the commercialization of polymer/CNT nanocomposites. Here, we demonstrate a process technology that involves in situ bulk polymerization of methyl methacrylate monomer in the presence of multi‐wall carbon nanotubes (MWCNTs) and commercial poly(methyl methacrylate) (PMMA) beads, for the preparation of PMMA/MWCNT conducting nanocomposites with significantly lower (0.12 wt% MWCNT) percolation threshold than ever reported with unmodified commercial CNTs of similar qualities. Thus, a conductivity of 4.71 × 10?5 and 2.04 × 10?3 S cm?1 was achieved in the PMMA/MWCNT nanocomposites through a homogeneous dispersion of 0.2 and 0.4 wt% CNT, respectively, selectively in the in situ polymerized PMMA region by using 70 wt% PMMA beads during the polymerization. At a constant CNT loading, the conductivity of the composites was increased with increasing weight percentage of PMMA beads, indicating the formation of a more continuous network structure of the CNTs in the PMMA matrix. Scanning and transmission electron microscopy studies revealed the dispersion of MWCNTs selectively in the in situ polymerized PMMA phase of the nanocomposites. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
Well‐dispersed multiwalled carbon nanotubes/polyurethane (MWCNTs/PU) composites were synthesized in situ polymerization based on treating MWCNTs with nitric acid and silane coupling agent. The morphology and degree of dispersion of the MWCNTs were studied using a high resolution transmission electron microscopy (HR‐TEM) and X‐ray powder diffraction (XRD). The result showed that MWCNTs could be dispersed still in the PU matrix well with the addition of 2 wt% MWCNTs. The thermal and mechanical properties of the composites were characterized by dynamic mechanical thermal analysis, thermogravimetric analysis, tensile, and impact testing. The result suggested that the glass transition temperature (Tg) of composites increased greatly with increasing MWCNTs content slightly, and the MWCNTs is also helpful to improve mechanical properties of composites. Furthermore, the composites have an excellent mechanical property with the addition of 0.5 wt% MWCNTs. The electrical property testing indicates that the MWCNTs can improve evidently the electrical properties of composites when adding 1 wt% MWCNTs to the PU matrix. The volume resistivity of composites reaches to an equilibrium value. POLYM. COMPOS., 33:1866–1873, 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
Nanocomposites based on poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate‐co‐octadecyl methacrylate) (M/O) matrices and four different types of multiwall carbon nanotubes: pristine, oxidized (MWCNT–COOH), methyl ester (MWCNT–COOCH3), and dodecyl ester (MWCNT–COOC12H25) functionalized, were prepared in situ by radical (co)polymerization. The effectiveness of preparation of nanocomposites regarding dispersion and distribution of various MWCNT in polymer matrices was sized by Scanning electron microscopy. In case of PMMA matrix, the best dispersion and distribution were accomplished for MWCNT–COOCH3 due to their chemical resemblance with polymer matrix. After the introduction of 10 mol % of octadecyl methacrylate in polymer matrix a fairly good dispersion and distribution of MWCNT–COOCH3 were retained. The addition of 1 wt % of MWCNTs caused a significant reduction in the degree of polymerization of the PMMA matrix. But at the same time, the present MWCNTs increased storage modulus of PMMA nanocomposites except for dodecyl ester functionalized MWCNT. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46113.  相似文献   

20.
A series of multiwalled carbon nanotubes (MWCNTs) grafted by chitosan nanocomposite (NC) films were prepared by a direct blending process and solution casting method. In this study, we modified multiwalled carbon nanotubes with glucose (MWCNT–Gl) for this purpose, and the effects of MWCNT–Gl on the structural, mechanical, and thermal properties of chitosan films with different contents of MWCNT–Gl were investigated. The structure, thermal stability, and mechanical properties of the composite were examined by X‐ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and mechanical testing. The results indicate that the MWCNTs treated by glucose were dispersed well in the chitosan matrix, and the tensile properties of the NC films were improved greatly compared with neat chitosan. Also, with increasing MWCNT–Gl content, the crystalline nature of chitosan decreased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42022.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号