首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin‐film cadmium telluride (CdTe) photovoltaic (PV) technology is poised to begin making significant contributions and impact on terrestrial, electric power generation. However, some outstanding issues such as stability and transient behavior, and their impact on reliability and assessment of performance, remain to be thoroughly addressed, which has prompted some unease among PV industry integrators toward deploying this technology. We explore the issues of long‐term stability and transient behavior in the performance of CdTe modules herein, using data acquired from indoor light‐soaking studies. We find that measurement of current‐voltage parameters and their temperature coefficients are entangled with transient effects. Changes in module power depend on recent operating history, such as electrical bias, and can result in either artificially high or low performance. Both the open‐circuit voltage (VOC) and fill factor (FF) are significantly impacted by metastable behavior that appears to linger for up to tens of hours, and we observe such increased transient effects after modules have undergone several hundred hours of light exposure. We present and analyze data measured under standard reporting conditions and actual operating conditions for six CdTe modules light‐exposed and stressed at 65°C nominal temperatures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
We present an approach to determine the potential energy gains of flat plate non‐concentrating photovoltaic systems for the case of two‐axis tracking and two inclination angles with fixed orientation (assuming biannual adjustment) compared to the configuration of single fixed optimum angle. The calculation is based on the Photovoltaic Geographic Information System (PVGIS), which integrates modelling tools with the pan‐European solar radiation database. The results indicate that in the case of a PV system with two seasonal inclination angles, the maximum yearly gains, compared to the single fixed optimum angle, do not exceed 60–70 kWh per kWp in the Mediterranean region, while in the Baltic and North Sea regions this configuration gives less than 20 kWh extra. For the case of two‐axis tracking, the relative energy gain compared to single fixed optimum angle is highest in the Northern latitudes but the absolute gain is much higher in the South. Typical yearly gains in Portugal and the Mediterranean region are in the range of 400–600 kWh per kWp. The smallest absolute increase is found in the Northwest and Central Europe including the British Isles, where it is lower than 250 kWh per kWp. For crystalline silicon we also investigate the effects of temperature and shallow‐angle reflectivity on the comparison between fixed and tracking systems. While both effects reduce the overall energy output, the temperature degradation is stronger for tracking systems while the reflectivity reduces output more for fixed systems. The combined effect is almost equal for fixed and two‐axis tracking systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we present an indoor measurement procedure for characterizing the electrical performance of large aperture photovoltaic modules. Because of the fact that sun simulators, especially for concentrator photovoltaic applications, are strongly limited in the size of the uniformly illuminated area, we developed a measurement procedure that allows characterizing modules with a larger aperture area than the aperture provided by the sun simulator. The procedure is based on the concept of stepwise illumination of the module area and measurement of the corresponding I–V curves—without the need to contact the subunits directly. Using the additionally measured dark I–V curve of the module, the characteristic I–V curve of the full module can be calculated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Solar simulators based on light‐emitting diodes (LEDs) have shown great promise as alternative light sources for indoor testing of photovoltaic cells with certain characteristics that make them superior to the traditional solar simulators. However, large‐area uniform illumination more suitable for larger cells and module measurements still remain a challenge today. In this paper, we discuss the development and fabrication of a scalable large‐area LED‐based solar simulator that consists of multiple tapered light guides. We demonstrate fine intermixing of many LED light rays and power delivery in the form of a synthesized AM 1.5 spectrum over an area of 25 cm × 50 cm with better than 10% spatial nonuniformity. We present the spectral output, the spatial uniformity, and the temporal stability of the simulator in both the constant current mode and the pulsed‐mode LED operation, and compare our data with the International Electrotechnical Commission standards on solar simulators for class rating. Although the light intensity with our current design and settings falls short of the standard solar AM 1.5 intensity, this design and further improvements open up the possibility of achieving large‐area, high‐power indoor solar simulation with various desired spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the feasibility of using fixed resistors instead of active maximum power tracking as electrical loads for long‐term exposure testing of photovoltaic modules and arrays. The method of investigation was to compare resistive versus active loading on two modules for which historic current‐voltage data over time were available. Also, a small amorphous silicon array was installed with a resistive load and the performance has been monitored versus time. The major conclusion of this work is that fixed resistive loading is an inexpensive and viable means of loading photovoltaic devices for exposure testing if the resistance value used is close to the ratio of the voltage to the current at the maximum power point under Standard Test Conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The performance of a roof mounted grid‐connected photovoltaic (PV) system in Northern Ireland was monitored over 3 years on annual, seasonal and monthly bases. The overall system performance was adversely affected by low insolation conditions; 19% of total incident insolation was absorbed at irradiance level below 200 W/m2 and 67% below 600 W/m2, only 6·2% above 900 W/m2. In summer and winter, the PV and system efficiencies were 9·0 and 8·5%, and 7·8 and 7·5%, respectively and inverter efficiencies were 86·8 and 85·8%, respectively. The inverter for this particular system was oversized; 77% of the total DC energy produced when inverter's operating load was 50% of its rated capacity. The annual average monthly system performance ratio (PR) was 0·61 with seasonal variation 0·59 to 0·63. The average monthly PV, system and inverter efficiencies over the whole monitored period were 8·8, 7·6 and 86·8%, respectively. The main losses of the system were inverter DC/AC conversion loss, inverter threshold loss and low insolation loss. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The current–voltage ( I‐V) characteristics of 15 different photovoltaic modules are monitored during more than 2 years of operation at four locations (Germany, Italy, India and Arizona) corresponding to four different climate zones. The electrical stability of the photovoltaic modules during the time of outdoor exposure is investigated in terms of measured I‐V curve translated to standard test conditions. This translation compensates the influence of module temperature, irradiance, spectral effects and soiling on the I‐V curves. The changes of output power after these corrections are attributed to initial consolidation phases, to long‐term degradation of the electrical properties and to seasonal cycles associated with metastabilities. Modules made from crystalline Si turn out to show no or only minor effects. Thin‐Film modules (CdTe, Cu(In,Ga)Se2 and thin‐film Si) exhibit a wide spread of metastable behaviour with consistent patterns for identical modules in different climates but with significant differences amongst different manufacturers of the same thin‐film technology. We show further that this metastable behaviour influences the energy yield of the modules. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
A new method for the spectral response measurement of large‐area single and multi‐junction thin‐film photovoltaic modules is presented, making use of a chopped monochromatic beam produced from a continuous source with band pass filters and lock‐in technique. The beam is projected onto part of the test module and superimposed over continuous bias light of variable colour. The procedure for the determination of the absolute spectral response is presented, and the influence of the intrinsic non‐uniformity of the monochromatic beam is investigated. The results obtained are compared with those from two other methods of spectral response measurement, providing a validation of the proposed experimental setup. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Poly(ethylene‐co‐vinyl acetate) (EVA) is the primary polymer used for encapsulation of photovoltaic (PV) modules. Its degree of cross‐linking (gel content) is taken as a major quality reference. The EVA gel content is normally measured by Soxhlet extraction and more recently also by Differential Scanning Calorimetry (DSC). The DSC method is proven here to be fast and effective but is, as the Soxhlet extraction method, destructive to the PV module. With the aim of developing a fast and non‐destructive method to determine the gel content, a number of analytical techniques are presented. The most promising method is ultraviolet/visible/near‐infrared (UV/Vis/NIR) optical transmission. The measured diffuse transmission reflects the EVA crystallite size, which is related to the EVA gel content. This opens the possibility to apply an in‐line analysis of every PV module immediately after the lamination step and could significantly contribute to the process quality control that is needed in future high‐throughput production lines of PV modules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Partial shading has been recognized as a major cause of energy losses in photovoltaic (PV) power generators. Partial shading has severe effects on the electrical characteristics of the PV power generator, because it causes multiple maximum power points (MPPs) to the power‐voltage curve. Multiple maxima complicate MPP tracking, and the tracking algorithms are often unable to detect the global maximum. Considerable amount of available electrical energy may be lost, when a local MPP with low power is tracked instead of the global MPP. In this paper, the electrical characteristics of series‐connected silicon‐based PV modules under various partial shading conditions are studied by using a Matlab/Simulink simulation model. The simulation model consists of 18 series‐connected PV modules, corresponding to a single‐phase grid‐connected PV power generator. The validity of the simulation model has been verified by experimental measurements. The voltage and power characteristics of the PV power generator have been investigated under various system shading and shading strength conditions. The results can be utilized to develop new MPP tracking algorithms and in designing, for example, building integrated PV power generators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The performance of a photovoltaic module at Standard Test Conditions (STC) is valuable for comparing the peak performance of different module types. It does not, however, give enough information to accurately predict how much energy a module will deliver when subjected to real operating conditions. There are several proposals for an energy rating for PV modules which attempt to account for the varying operating conditions that one encounters in the field. In this paper, we present an approach with the emphasis on simplicity and practicality that incorporates existing standard measurements to determine the energy output as a function of global in‐plane irradiance and ambient temperature. The method is applied to crystalline Si modules and tested with outdoor measurements, and a good accuracy of prediction of energy production is observed. Finally, a proposal is made for a simple Energy Rating labeling of PV modules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Valuation of photovoltaic devices depends strongly on the measured power output of the device. This quantity is usually determined under artificial sunlight in production line measurement systems or industrial or research test labs. A practical calibration chain is realized essentially with measurements at solar simulators. The measurement conditions are defined in the IEC 60904 series of standards. An important part of the standard testing conditions is the definition of a specific spectral distribution of the sunlight (AM1.5 global). The inevitable deviations of the spectrum of artificial light sources from the standard spectrum have to be taken into account by a spectral mismatch factor. The uncertainty of this crucial correction is spectrally dependent, in most cases unknown and complex and inconvenient to evaluate. In this article a randomizing method is proposed which allows one to calculate the uncertainty of the mismatch factor from the uncertainties of the input parameters determined with high spectral resolution. Based on a range of different spectral responses of solar cells on the one hand and variations of the solar simulator spectral distribution on the other, we are able to generalize the results to a broad set of measurement configurations. A sensitivity analysis reveals the crucial wavelength regions and thus allows the systematic optimization of simulator spectra and selection of reference cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The performance of six photovoltaic (PV) modules composed of polycrystalline silicon (pc‐Si), amorphous silicon (a‐Si), and hydrogenated amorphous silicon/crystalline silicon (a‐Si:H/c‐Si) modules was investigated at eight locations in Japan from August 2007 to December 2008. In addition, solar irradiance, solar spectrum, and module temperature were simultaneously measured in these round‐robin measurements. In this study, we evaluate quantitatively the effects of module temperature and solar spectrum on the performance of the PV modules as thermal factor (TF) and spectral factor (SF), respectively. Furthermore, we investigate the variation in module performance, which is converted into module performance under standard test conditions (STC) using the TF and SF. In the case of the pc‐Si modules, the variations in performance ratio under STC (PRSTC) for these modules range from 0.056 to 0.074 through the round‐robin measurements. The TF indicates that the contribution of module temperature to the variation in performance is large, between about 15 and 20%. However, the SF suggests that the contribution of solar spectrum is quite small, less than 3%. In the case of the a‐Si modules, the contribution of module temperature is about 8%. The performance is largely influenced by solar spectrum, more than 12% at its maximum. Consequently, the variations in the corrected PRSTC of the a‐Si modules are between 0.117 and 0.141. These large variations may result from the effects of thermal annealing and light soaking. The variation in PRSTC of the a‐Si:H/c‐Si module is similar to that of the pc‐Si modules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This work evaluates the influence of mismatch illumination on the performance of GaAs monolithically series‐connected photovoltaic converters under laser illumination. A theoretical model which takes into account nonuniform illumination, light spillage and mismatch losses is presented. The influence of laser spot size on the converter efficiency is also addressed. The laser spot size must be chosen in order to make a trade‐off between mismatch and nonuniform illumination losses, which predominate in a laser spot diameter smaller than the diameter of the device, and spillage losses, which predominate in a laser spot diameter larger than that of the device. For single photovoltaic converters, it is advisable to reduce the laser spot diameter to values to less than that of the converter. For multiple photovoltaic converters, especially if there is a considerable misalignment between the light source and the device, a spot diameter slightly larger than that of the device is recommended. Otherwise, mismatch losses could severely limit MPC performance. When the laser beam diameter equals the device diameter, and for a 5% misalignment, efficiencies of 55.0, 53.6 and 50.1% are envisaged, for two‐, three‐ and six‐sector multiple photovoltaic converters, respectively. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Manufacturing cost analysis is becoming an increasingly important tool in the photovoltaics industry to identify research areas that need attention and enable progress towards cost reduction targets. We describe a method to estimate manufacturing cost that is suitable for use during an early stage of technology development, delivering both the manufacturing cost estimate as well as an uncertainty analysis that quickly highlights the opportunities for greatest cost improvement. We apply the technique to three process sequences for the large‐scale production of organic‐inorganic hybrid perovskite photovoltaic modules. A process sequence that combines two demonstrated perovskite module sequences is estimated to cost $107/m2 (uncertainty range $87 to 140/m2), comparable with commercial crystalline silicon and cadmium telluride technologies (on a US $/m2 basis). A levelized cost of electricity calculation shows that this perovskite technology would be competitive in 2015 with incumbent photovoltaic technologies if a module power conversion efficiency of 18% and lifetime of 20 years can be achieved. Further analysis shows that even if the cost of the active layers and rear electrode were reduced to zero, a module power conversion efficiency of 18% and lifetime of 20 years would be required to meet the 2020 SunShot levelized cost of electricity targets. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Tucson Electric Power Company (TEP), headquartered in Tucson, AZ, currently has nearly 5·0 MWdc of utility‐scale grid‐connected photovoltaic (PV) systems installed in its service territory. These systems have been installed through a multiyear, pay‐as‐you‐go development of renewable energy, with kWhac energy production as a key program measurement. This PV capacity includes a total of 26 crystalline silicon collector systems, each rated at 135 kWdc for a total of 3·51 MWdc, that have been installed at the Springerville, AZ generating plant by TEP making this one of the largest PV plants in the world. This facility started operations in 2001 and recently passed the 5‐year milestone of continuous operations. These systems were installed in a standardized, cookie‐cutter approach whereby each uses the same array field design, mounting hardware, electrical interconnection, and inverter unit. This approach has allowed TEP to achieve a total installed system cost of $5·40/Wdc and a TEP‐calculated levelized energy cost of $0·062/kWhac for PV electrical generation. This paper presents an assessment of operating experience including performance, costs, maintenance, and plant operation over this 5‐year period making this one of the most detailed and complete databases of utility‐scale PV systems available to the US DOE Program. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

17.
A higher conversion efficiency of photovoltaic modules does not automatically imply a lower environmental impact, when the life‐cycle of modules is taken into account. An environmental comparison is carried out between the production and use phase, except maintenance, of an indium–gallium–phosphide (InGaP) on multicrystalline silicon (mc‐Si) tandem module, a thin‐film InGaP cell module and a mc‐Si module. The evaluation of the InGaP systems was made for a very limited industrial production scale. Assuming a fourfold reuse of the GaAs substrates in the production of the thin‐film InGaP (half) modules, the environmental impacts of the tandem module and of the thin‐film InGaP module are estimated to be respectively 50 and 80% higher than the environmental impact of the mc‐Si module. The energy payback times of the tandem module, the thin‐film InGaP module and the mc‐Si module are estimated to be respectively 5.3, 6.3 and 3.5 years. There are several ways to improve the life‐cycle environmental performance of thin‐film InGaP cells, including improved materials efficiency in production and reuse of the GaAs wafer and higher energy efficiency of the metalorganic chemical vapour deposition process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The high cost of wafers suitable for epitaxial deposition of III‐V solar cells has been a primary barrier to widespread use of these cells in low‐concentration and one‐sun terrestrial solar applications. A possible solution is to reuse the substrate many times, thus spreading its cost across many cells. We performed a bottom‐up techno‐economic analysis of three different strategies for substrate reuse in high‐volume manufacturing: epitaxial lift‐off, spalling, and the use of a porous germanium release layer. The analysis shows that the potential cost reduction resulting from substrate reuse is limited in all three strategies––not by the number of reuse cycles achievable, but by the costs that are incurred in each cycle to prepare the substrate for another epitaxial deposition. The dominant substrate‐preparation cost component is different for each of the three strategies, and the cost‐ranking of these strategies is subject to change if future developments substantially reduce the cost of epitaxial deposition. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Field tests and accelerated ageing tests were conducted on CdTe photovoltaic modules with Sb‐based back contacts. Significant performance degradation was observed during one and a half years of outdoor exposure. Small‐area samples were prepared from field tested modules and characterized with current–voltage, capacitance–voltage and resistance measurements. Results show that module performance degradation in the field can be partly attributed to a decrease in doping concentration close to the CdS/CdTe junction and an increased resistance in the transparent front contact. A comparison with results in the literature indicates that bias voltage may play a role in the degradation process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
We present a geographical assessment of the performance of crystalline silicon photovoltaic (PV) modules over Europe. We have developed a method that is based on a material specific analytical expression of the PV conversion efficiency, relative to nominal efficiency, as a function of module temperature and irradiance. This method is combined with a climate database that includes average daytime temperature and irradiance profiles. It is found that the geographical variation in ambient temperature and yearly irradiation causes a decrease in overall yearly PV performance from 3 to 13% relative to the performance under Standard Test Conditions, with the highest decrease found in the Mediterranean region. Based on the above results we developed a simplified linear expression of the relative PV module efficiency that is a simple function of yearly total irradiation and yearly average daytime temperature. The coefficients to the linear expression are found by fitting to the map resulting from the above‐mentioned analytical approach. The prediction of total yearly PV output from this linear fit deviates less than 0·5% from the more detailed calculation, thus providing a faster and more simplified alternative to the yield estimate, in the case when only limited climate data are available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号