首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinyl chloride) (PVC)/halloysite nanotubes (HNTs) nanocomposites were prepared by melt blending. Transmission electron microscopy (TEM) results showed that HNTs were uniformly dispersed in the PVC matrix. The thermal properties of PVC/HNTs nanocomposites were investigated in detail. The apparent activation energies (Ea) were analyzed by means of Kissinger and Flynn-Wall-Ozawa methods. Thermogravimetric analysis results showed that the thermal properties of PVC/HNTs nanocomposites were improved. Cone calorimetry was used to measure the smoke evolution and fire properties. The addition of HNTs led to a remarkable reduction in the smoke production rate, the total smoke production, and the peak heat release rate.  相似文献   

2.
Effects of polymerization temperature, conversions, and nonionic surfactant on the particle properties of suspension poly(vinyl chloride) (PVC) resins were investigated. It was shown that polymerization temperature has no significant influences on the mean particle size of PVC resin, and that the cold plasticiser absorption (CPA) of resin decreases linearly with the increase of polymerization temperature. Agglomeration of VCM droplets finishes before 20% conversion, and the mean particle size keeps almost constant at later stages of the polymerization process, but the CPA continues decreasing with the increase of conversion. Scanning Electron Microscopy (SEM) micrographs show that the degree of agglomeration of primary particles increases with polymerization temperature and conversion. Addition of nonionic surfactant to the VCM suspension system, as a secondary suspending agent, has a great influence on the particle properties of PVC resin. The particle size and CPA increase as the concentration of nonionic surfactant increases. The nonionic surfactant with a greater HLB value is more effective in raising the mean particle size, but is less effective in raising the CPA. It is considered that the added nonionic surfactant would be absorbed faster on the VCM/water interface than the poly(vinyl alcohol) (PVA), which was used as the primary suspending agent. Because the colloid protection ability of the nonionic surfactant is less than that of PVA, droplets become less resistant to coalescence, and the mean particle size of the final PVC resin increases consequently. The increase of porosity is caused by the combined effects of increased coalescence of VCM droplets and the nonionic surfactant's steric effect inside the droplets. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1544–1552, 2002  相似文献   

3.
Vinyl chloride suspension polymerization was carried out in a pilot‐scale reactor to study the effects of different methods of initiator addition on poly(vinyl chloride) (PVC) resin properties. The experiments used different arrangements for adding the initiator to the reactor, whereas other reaction conditions were the same: (i) initiator was added to the continuous aqueous phase and then monomer was dispersed in it (conventional method); (ii) initiator was predissolved in monomer before dispersing in the continuous aqueous phase; and (iii) suspending agents along with initiator were added to the monomer before polymerization. The PVC resin prepared by method of (i) had a higher monomer conversion and a higher Sauter mean diameter of grains with a narrow particle size distribution comparable to that of PVC resins by other methods. Scanning electron microscopy showed more uniform particles and fused primary particles in the grains, which confirms lower porosity and lower cold plasticizer absorption (CPA) for PVC grains produced by procedure of (ii). The results showed that when the suspending agents were also predispersed in monomer along with initiator (iii), CPA increases dramatically due to internal porosity of the grains. Simultaneously, a marked decrease in Sauter mean diameter was apparent. Scanning electron microscopy micrographs show that primary particles in the interior of PVC grains prepared by the latter method are looser, and there is more free volume between primary particles resulting the high internal porosity and consequently higher CPA. Mercury porosimetry analysis also confirms these results. K value as a molecular weight characteristic for all methods was the same . J. VINYL ADDIT. TECHNOL., 24:116–123, 2018. © 2016 Society of Plastics Engineers  相似文献   

4.
刘聪  贾志欣 《广东化工》2013,(24):1-2,4
制备了PVC/CPE/埃洛石纳米管(HNTs)复合材料,研究了HNTs对PVC/CPE复合材料力学性能、微观形貌及热性能的影响.结果显示,HNTs对PVC/CPE材料的增韧效果与基体的韧性及HNTs的添加量有关.当基体韧性较低时,添加少量的HNTs可显著提高PVC/CPE的冲击强度,同时,材料的拉伸强度、弯曲强度和热性能也得到一定的提高.当m(PVC)∶m(CPE)∶m(HNTs)=100∶ 3∶3时,复合材料的冲击强度可达22.17 J/m2,为纯PVC基体树脂的3.4倍,复合材料的冲击断面较粗糙,HNTs在基体中分散较均匀.  相似文献   

5.
通过熔融混炼法制备了聚氯乙烯(PVC)/埃洛石纳米管(HNTs)复合材料,通过力学性能测试和扫描电子显微镜、透射电子显微镜等方法研究了HNTs含量对复合材料形貌与性能的影响,并分析了HNTs的作用机理。结果表明,HNTs可以对PVC产生增强增韧的作用;PVC/HNTs复合材料的储能模量和玻璃化转变温度相对纯PVC均有所增加;不同含量的HNTs在PVC基体中的分散性均较好且无大面积团聚的现象;HNTs与PVC间具有较强的界面作用力,其界面作用半经验参数(B)值为4.35。  相似文献   

6.
The heterogeneous polymerization of vinyl chloride monomer (VCM), with n‐butane as the reaction medium, was used to prepare poly(vinyl chloride) (PVC) resins. The particle features of the resulting resins and the particle formation mechanism of the polymerization process were investigated. The PVC resins prepared by the new polymerization process had a volume‐average particle size comparable to that of suspension PVC resins and a lower number‐average particle size. From scanning electron micrographs, it could be seen that the new PVC resins had a regular particle shape and a smooth surface with no obvious skin. They also had a high porosity. The new PVC resins were composed of individual and loosely aggregated primary particles. The diameter of the primary particles in the top layer of the grains was smaller than that of the primary particles in the center part of the grains. On the basis of the particle features of these PVC resins, a particle formation mechanism for the new polymerization process was proposed. PVC chains precipitate from a VCM/n‐butane mixed medium to form primary aggregates at a very low conversion, and the primary aggregates of the PVC chains aggregate to form primary particles, which further aggregate to form grains. The primary particles and grains grow by the capture of newly formed PVC chains and their primary aggregates and by polymerization occurring inside the aggregates. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 954–958, 2003  相似文献   

7.
During the preparation of the poly(vinyl chloride) (PVC) slush powder, we found that PVC resins obtained by different polymerization methods affected many properties of slush powder and its products. Two types of commercial PVC resins were used for slush powder preparation: mass poly(vinyl chloride) (M‐PVC) and suspension poly(vinyl chloride) (S‐PVC). We used the Haake rheomix test to characterize the absorption of plasticizers into PVC resins, and the results showed that M‐PVC absorbed the plasticizers more quickly than S‐PVC. The fusion behavior of the two slush powders was studied by the thermal plate test and Haake rheomix test, and the results showed that the slush powder of M‐PVC was easier to fuse than that of S‐PVC. The different properties of the two resins and slush powder could be explained by the morphology, average size, and size distribution. Due to the “skin” of the particles' surfaces, the wider size distribution, and the large size of particles, S‐PVC absorbed the plasticizers more slowly and was more difficult to fuse. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3331–3335, 2002  相似文献   

8.
Poly(vinyl chloride) (PVC) nanocomposites were prepared via an in situ intercalative suspension polymerization of vinyl chloride with four organic carboxylic acid salts (montmorillonite [MMT] units) containing thermally stable lanthanum ions. The effects of different lanthanum organic montmorillonites (La‐OMMTs) on the particle features and molecular weight were investigated. The transmission electron microscopy data indicated the formation of partially exfoliated or intercalated PVC/La‐OMMTs nanocomposites. The effect of different functional groups on the mechanical properties and processing thermal stability of PVC/La‐OMMT nanocomposites were investigated. Tensile testing and two‐roll mill processing results showed that La‐OMMTs could enhance the dynamic thermal stability and mechanical properties versus PVC pure resin and PVC/I.30P nanocomposites (composed of PVC and I.30P). This suggested that the double bond and amidogen group in La‐OMMTs could promote the dispersion of La‐OMMTs in the PVC matrix and also improve the adhesion between the La‐OMMTs and PVC matrix. The results have potential value in the industrial development of PVC/La‐OMMTs nanocomposites. J. VINYL ADDIT. TECHNOL., 26:97–108, 2020. © 2019 Society of Plastics Engineers  相似文献   

9.
研究了聚乙烯醇(PVA)分散剂和非离子型表面活性剂对悬浮聚氯乙烯(PVC)树脂颗粒特性的影响。结果表明随着PVA醇解度的增加,PVC树脂的颗粒规整性和表现密度增加,孔隙率和吸油率降低;随着非离子型表面活性剂添加量的增加,PVC树脂的平均粒径和吸油率增大。从PVA和表面活性剂在水一油两相分配出发,讨论了PVA醇解度和添加非离子型表面活性剂对PVC树脂的颗粒特性影响机理。  相似文献   

10.
研究了氯乙烯悬浮聚合时添加氯化聚乙烯(CPE)冲击改性剂、CaCO3填料、润滑剂及热稳定剂对聚合反应的影响,并对得到的可直接加工的原位聚合聚氯乙烯(RTUPVC)树脂的性能进行了表征。结果发现:CPE和CaCO3的加入均使达到相同压降的聚合时间缩短,氯乙烯聚合转化率相应减小;RTUPVC树脂的粒径随CPE粒径和用量的增大而增大,而CaCO3含量对RTUPVC树脂粒径影响不大;润滑剂和热稳定剂的加入,对聚合反应起延缓作用,但对RTUPVC树脂粒径影响不大;RTUPVC树脂加工塑化时间随CPE含量的增加而减少;相同CPE用量时,RTUPVC树脂的冲击强度和拉伸强度明显高于PVC/CPE共混物。  相似文献   

11.
On the basis of the fusion behavior of poly(vinyl chloride) (PVC), the influence of compounding route on the properties of PVC/(layered silicate) nanocomposites was studied. Four different compounding addition sequences were examined during the melt compounding of PVC with montmorillonite (MMT) clay, including (a) a direct dry mixing of PVC and nanoclay, (b) an addition of nanoclay at compaction, (c) an addition of nanoclay at the onset of fusion, and (d) an addition of nanoclay at equilibrium torque. Both unmodified sodium montmorillonite (Na+‐MMT) and organically modified montmorillonite (Org.‐MMT) clays were used, and the effect of the addition sequence of the clay during compounding on its dispersion in the matrix was evaluated by X‐ray diffraction and transmission electron miscroscopy. The surface color change, dynamic mechanical analysis, and flexural and tensile properties of PVC/clay nanocomposites were also studied. The experimental results indicated that both the extent of property improvement and the dispersion of nanoparticles in PVC/(layered silicate) nanocomposites are strongly influenced by the degree of gelation achieved in PVC compounds during processing. The addition of nanoclay to PVC must be accomplished at the onset of fusion, when PVC particles are reduced in size, in order to produce nanocomposites with better nanodispersion and enhanced mechanical properties. Overall, rigid PVC nanocomposites with unmodified clay (Na+‐MMT) were more thermally stable and exhibited better mechanical properties than their counterparts with organically modified clay (Org.‐MMT). J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

12.
Effects of individual and composed poly(vinyl alcohol) (PVA) suspending agents on the particle morphology of poly(vinyl chloride) (PVC) resins were investigated and discussed in the view of PVA absorption at the oil/water interface and interfacial behavior. It was shown that the percentage and surface coverage of PVA at the oil/water interface decreased with the increase of the degree of hydrolysis (DH) of PVA in the DH range of 70–98 mol %, while the interfacial tension of VC/PVA aqueous solution increased linearly with the increase of DH of PVA. PVC resin with more regular particle shape, increased agglomeration and fusion of primary particles, lower porosity and higher bulk density, was prepared by using PVA with a higher DH as a suspending agent. This was caused by the occurrence of drop coalescence at the very early stage of VC polymerization, the increase of particle shrinkage, and the lower colloidal protection to primary particles. It was also shown that the interfacial tension of VC/water in the presence of composed PVA suspending agents varied linearly with the weight composition of the composed PVA suspending agents. The particle properties of PVC resin prepared by using the composed PVC suspending agents were usually situated in between the properties of PVC resins prepared by using the corresponding individual PVA suspending agent. The particle morphology and properties of PVC resin could be controlled by the suitable choice of the composed PVA suspending agents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3848–3855, 2003  相似文献   

13.
Poly(vinyl chloride) (PVC)/organophilic‐montmorillonite (OMMT) nanocomposites were prepared by direct melt intercalation. PVC/compatibilizer ((vinyl acetate) copolymer (VAc))/OMMT nanocomposites were also prepared by melt intercalation by a masterbatch process. The effect of OMMT content on the nanostructures and properties of nanocomposites was studied. The nanostructures were studied by wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM). The linear viscoelastic properties and dynamic mechanical properties of PVC/OMMT nanocomposites were also investigated by an advanced rheometric expansion system (ARES) rheometer. The results showed that partially exfoliated and partially intercalated structures coexisted in the PVC/OMMT and PVC/VAc/OMMT nanocomposites. The mechanical properties test results indicated that the notched Charpy impact strengths of nanocomposites were improved compared to that of pristine PVC and had a maximum value at 1 phr OMMT loadings. The compatibilizer could further improve the impact strengths. But the existence of OMMT decreased the thermal stability of PVC/OMMT and PVC/VAc/OMMT nanocomposites. The linear viscoelastic properties test results indicated the dependence of G′ and G″ on ω shows nonterminal behaviors, and they had better processibility compared with pristine PVC. However, the glass transition temperatures of PVC/OMMT nanocomposites almost had little change compared to that of pristine PVC. POLYM. COMPOS., 27:55–64, 2006. © 2005 Society of Plastics Engineers  相似文献   

14.
The nanocomposites were manufactured by the incorporation of modified ZnO into the poly(vinyl chloride). ZnO nanoparticles were modified with diacid containing alanine amino acid. Ultrasonic irradiation was used for all process. The PVC/ZnO@DA nanocomposites were investigated by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, UV–visible spectroscopy, thermogravimetric, and mechanical analysis. Results showed the uniform dispersion of particles in the polymer matrix and ZnO@DA nanoparticles in quantum dot size. The optical properties of PVC were affected by the incorporation of modified quantum dot ZnO; also mechanical properties of PVC/ZnO@DA nanocomposites were improved.  相似文献   

15.
对以正丁烷(But)为反应介质的新型氯乙烯(VC)非均相聚合动力学和成粒机理进行了研究,根据VC-But二元体系气液平衡方程,由聚合过程气相压力或组成变化计算VC聚合转化率,VC非均相聚合的诱导期不明显,自动加速现象一般发生在聚合前、中期,后期聚合速率较小,新型VC非均相聚合PVC树脂的体粒径与悬浮PVC树脂相当,数均粒径较小,PVC颗粒由基本不熔结的初级粒子组成,颗粒内部初级粒子分布密度大,粒径大,孔隙率高;而在颗粒表层初级粒子分布密度高,粒径小,孔隙率低;树脂的增塑剂吸收率远大于悬浮PVC树脂,根据PVC树脂的颗粒特性和PVC与VC/But混合液的溶解度参数差异,推断聚合成粒机理为:PVC分子链在很低转化率时就从聚合介质中沉析出来并聚集形成微区,初级粒子和颗粒;后期成粒过程包括颗粒内部初级粒子的增长和向表层的离心聚集,颗粒对新形成的大分子链及其初级聚集体的捕捉等。  相似文献   

16.
Poly(vinyl chloride) (PVC) slush powder has been widely used; we prepared it by dry blending. We found that the absorption of plasticizer by the PVC resins was the most important factor in the dry‐blending process and, further, that different types of PVC resin had different absorption rates. This results of this study provide new information about the relationship of absorption to PVC and other parameters. Haake rheomix testing and the quantity of plasticizers absorbed by the PVC resins were used to characterize the absorption process. Suspension‐polymerization poly(vinyl chloride) (SPVC) and mass‐polymerization poly(vinyl chloride) (MPVC) in different sizes were used for the test. The results showed that the MPVC absorbed the plasticizer more quickly than SPVC, especially at a higher temperature. However, for the same PVC resin type, the absorbing speeds were nearly independent of particle size. The studies that used a scanning electric microscope and specific surface area revealed that the morphology of the two types of particles was different. The surfaces of the individual particles of SPVC were smoother than those of MPVC. There was a “skin” covering the SPVC particles, whereas with the MPVC particles, the primary polymer was exposed directly on the surface. This difference in morphology was shown to be a significant factor in the different rates of absorption of the plasticizers for the different PVC resins. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2369–2374, 2004  相似文献   

17.
In this study, poly(vinyl chloride) (PVC) and silica (SiO2) microcomposites and nanocomposites were prepared by melt mixing in a Haake torque rheometer. The fusion and rheological behaviors of PVC/SiO2 composites were evaluated by means of torque data recorded during processing to investigate the influence of the SiO2 particle size on these behaviors. It was found that the fusion time and the fusion temperature decreased with the decreasing of SiO2 particle size, whereas the fusion torque increased with the decreasing of particle size. The PVC/Si‐25‐nm nanocomposite (PVC including the 25 nm of SiO2) showed the highest apparent viscosity among the PVC/SiO2 microcomposites and nanocomposites prepared in this study. Scanning electron microscopy results demonstrated that some aggregates, whose sizes about 60–90 nm, were formed when the 25 nm of SiO2 was used as filler. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Poly (vinyl chloride), PVC/epoxidized natural rubber blend, ENR/carbon nanotubes, CNTs nanocomposites were prepared using melt intercalation and solution blending methods. In both preparation methods PVC: ENR: CNTs ratios were fixed at 50:50:2, while the 50/50 PVC/ENR blend without the addition of CNTs was used as control. The PVC/ENR/CNTs nanocomposites were exposed to electron beam (EB) irradiation at doses ranging from 0–200 kGy. The effects of two different preparation methods on the tensile properties, gel fraction and morphology of the PVC/ENR/CNTs nanocomposites were studied. Prior to EB irradiation, the addition of 2 phr of CNTs caused a drop in the tensile strength (Ts) of the 50/50 PVC/ENR blend, implying poor distribution of CNTs in the PVC/ENR blend matrix. However upon EB irradiation, the nanocomposites prepared by the melt blending method exhibited higher values of Ts as compared to the neat PVC/ENR blend due to occurrence of radiation-induced cross-linking in the PVC/ENR blend matrix. Transmission electron microscopy (TEM) images proved that a better dispersion of CNTs in PVC/ENR blend matrix can be achieved by melt intercalation compared to solution blending and the dispersion of CNTs was improved by irradiation. Scanning electron microscopy (SEM) results showed a distinct failure surface with formation of rough structure for the irradiated nanocomposites, which explains the higher values of tensile properties compared to the non-irradiated nanocomposites.  相似文献   

19.
A poly(vinyl chloride) (PVC) matrix of final particles is investigated by means of quasi-elastic light scattering (QELS) and high resolution porosimetry (HRP). It is demonstrated that the QELS method is a powerful tool for the detection of various higher organized structures in particle interiors, which in all likelihood will be a difficult-to-process fraction of the resin. Measurements of common PVC grades revealed that the QELS records are usually composed of three distinctly separated size distributions, which were assigned to the size distribution of single macromolecules dissolved (maximum at ca. 10 nm), associates of macromolecules (primary particles, the maximum at ca. 100–200 nm), and microglobules (the maximum at ca. 0.8–1 (μm)). The properties of primary particles are presented, as well as the correlation between QELS and HRP records. Based on this correlation, it can be suggested that the pore size distribution is in fact a morphological fingerprint of individual PVC resins. Some consequences of the results obtained for the evaluation of the processsing properties of PVC are discussed.  相似文献   

20.
以三氯乙烯模拟氯乙烯(VC),考查聚乙烯醇(KH20)/羟丙基甲基纤维素(60SH50)复合分散剂的分散能力和保胶能力,发现分散能力和保胶能力均随分散剂用量的增加而提高;复合分散剂中KH20比例增大,分散能力下降而保胶能力增强。以此为基础进行VC悬浮聚合,研究分散剂对聚氯乙烯(PVC)树脂颗粒特性的影响。发现适量的分散剂可同时提高PVC树脂的表观密度和增塑剂吸收量;增大KH20的比例可提高PVC树脂的表观密度,同时使粒度分布变窄,但是增塑剂吸收量有所下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号