首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous photoemission of crystalline silicon provides information on excess charge carrier density and thereby on electronic properties such as charge carrier recombination lifetime and series resistance. This paper is dedicated to separating bulk recombination from surface recombination in silicon solar cells and wafers by exploiting reabsorption of spontaneously emitted photons. The approach is based on a comparison between luminescence images acquired with different optical short pass filters and a comprehensive mathematical model. An algorithm to separate both front and back surface recombination velocities and minority carrier diffusion length from photoluminescence (PL) images on silicon wafers is introduced. This algorithm can likewise be used to simultaneously determine back surface recombination velocity and minority carrier diffusion length in the base of a standard crystalline silicon solar cell from electroluminescence (EL) images. The proposed method is successfully tested experimentally. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
con layer is measured to be ~3.19 μs. These values are very close to the reflectivity and the minority carrier lifetime of Si3N4 as a passivation layer on a bulk silicon-based solar cell (0.33% and 3.03/μs, respectively).  相似文献   

3.
Long Yongfu  Ge Jin 《半导体学报》2009,30(5):052003-052003-5
Porous silicon (PS) samples were fabricated by pulse current etching using different times. The downward uniformity and optical properties of the PS layers have been investigated using reflectance spectroscopy, photoluminescence spectroscopy, and scanning electron microscopy (SEM). The relationship between the refractive index and the optical thickness of PS samples and the etching depth has been analyzed in detail. As the etching depth increases, the average refractive index decreases, indicating that the porosity becomes higher, and the formation rate of the optical thickness decreases. Meanwhile, the reflectance spectra exhibit less intense interference oscillations,which mean the uniformity and interface smoothness of the PS layers become worse. In addition, the intensity of PL emission spectra is slightly increased.  相似文献   

4.
龙永福  葛进 《半导体学报》2009,30(5):052003-5
多孔硅样品使用脉冲电化学腐蚀法经过不同的腐蚀时间制备完成,使用反射光谱、光致发光光谱和SEM对多孔硅薄膜的纵向均匀性以及其光学特性进行了研究,还详细研究了随腐蚀深度变化的折射率和光学厚度(n*d)等光学参数。实验表明:随着腐蚀深度的增加,多孔硅薄膜的平均折射率n降低,即多孔度变大;多孔硅薄膜的光学厚度的形成速度减小;同时,反射光谱表现更弱的干涉性,表明薄膜的均匀性和界面的平整性变差;另外,光致发光谱的强度微弱变强。  相似文献   

5.
A new two-step phosphorous diffusion gettering(TSPDG) process using a sacrificial porous silicon layer(PSL) is proposed.Due to a decrease in high temperature time,the TSPDG(PSL) process weakens the deterioration in performances of PSL,and increases the capability of impurity clusters to dissolve and diffuse to the gettering regions.By means of the TSPDG(PSL) process under conditions of 900℃/60 min + 700℃/30 min,the effective lifetime of minority carriers in solar-grade(SOG) Si is increased to 14.3 times its original value,and the short-circuit current density of solar cells is improved from 23.5 o 28.7 mA/cm~2,and the open-circuit voltage from 0.534 to 0.596 V along with the transform efficiency from 8.1%to 11.8%,which are much superior to the results achieved by the PDG(PSL) process at 900℃for 90 min.  相似文献   

6.
A new two-step phosphorous diffusion gettering(TSPDG) process using a sacrificial porous silicon layer(PSL) is proposed.Due to a decrease in high temperature time,the TSPDG(PSL) process weakens the deterioration in performances of PSL,and increases the capability of impurity clusters to dissolve and diffuse to the gettering regions.By means of the TSPDG(PSL) process under conditions of 900℃/60 min + 700℃/30 min,the effective lifetime of minority carriers in solar-grade(SOG) Si is increased to 14.3 times ...  相似文献   

7.
This paper shows that one second (1 s) firing of Si solar cells with screen‐printed Al on the back and SiN x anti‐reflection coating on the front can produce a high quality Al‐doped back‐surface‐field (Al‐BSF) and significantly enhance SiN x ‐induced defect hydrogenation in the bulk Si. Open‐circuit voltage, internal quantum efficiency measurements, and cross‐sectional scanning electron microscopy pictures on float‐zone silicon cells revealed that 1 s firing in rapid thermal processing at 750°C produces just as good a BSF as 60 s firing, indicating that the quality of Al‐BSF region is not a strong function of RTP firing time at 750°C. Analysis of edge‐defined film‐fed grown (EFG) Si cells showed that short‐term firing is much more effective in improving the hydrogen passivation of bulk defects in EFG Si. Average minority‐carrier lifetime in EFG wafers improved from ∼3 to ∼33 μs by 60 s firing but reached as high as 95μs with 1 s firing, resulting in 15·6% efficient screen‐printed cells on EFG Si. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
研究了中等能量(30 key)Ar+注入多孔硅和中等能量(30 key)Ar+先注入单晶硅后再进行电化学腐蚀成的多孔结构的光致发光特性.研究结果表明:中等能量(30 key)Ar+注入多孔硅后,多孔硅原有的发光峰消失,主要是Ar+对多孔硅表面氧的剥离作用.使得与氧相关发光的结构消失,多孔硅不再发光;中等能量(30 kev)Ar+先注入单晶硅后冉电化学腐蚀成的多孔结构中,通常多孔硅原有的580 nIn附近发光峰强度随注入Ar+剂量的增加而增强,并有红移;同时在谱峰处于470 nm附近的微弱发光峰不因注入Ar+而明显变化.  相似文献   

9.
龙永福 《半导体学报》2011,32(4):043003-4
使用反射光谱、光致发光光谱和SEM研究了通过脉冲腐蚀形成的多孔硅薄膜的径向折射率、光学和物理厚度。详细分析了沿径向方向多孔硅薄膜的径向折射率(n)和光学厚度(nd)与腐蚀中心之间的关系。实验结果表明:随着远离腐蚀中心,SEM图像表明:多孔硅样品的物理厚度缓慢变小,在腐蚀边缘,在径向58μm距离里,薄膜的物理厚度从2.48μm减少到1.72μm;此外,径向折射率n增加,即多孔度变小,同时,反射光谱强度显示出干涉振荡减弱,这意味着多孔硅薄膜的均匀性和界面的平整度变坏。光致发光谱的包络线显示蓝移的趋势,显示纳米微粒的尺寸减少。多孔硅微腔被制备用来研究多孔硅膜的径向光学特性,结果证实:在腐蚀中心,多孔硅膜的均匀性比边缘好。  相似文献   

10.
This paper investigates the radial refractive index and optical and physical thicknesses of porous silicon (PS) layers prepared by pulse etching by means of reflectance spectroscopy,photoluminescence spectroscopy and scanning electron microscopy(SEM).The relationship between the radial refractive index and optical thickness of the PS sample and the position away from the etched centre along the radial direction has been analyzed in detail. With the position farther away from the etched centre,the SEM image shows that the physical thickness of the PS sample decreases slowly,whereas intensely decreases from 2.48 to 1.72μm near the edge at a distance of 58μm.Moreover,the radial refractive index increases,indicating that the porosity becomes smaller.Meanwhile,the reflectance spectra exhibit the less intense interference oscillations,which mean that the uniformity and interface smoothness of the PS layers become worse,and the envelope curves of photoluminescence spectra exhibit a trend of blue-shift,indicating a reduction in nanocrystal dimensions.The PS micro-cavity is prepared to study the radial optical properties of the PS layer,and the results verify that the uniformity and smoothness of the PS layer in the centre are better than those at the edge.  相似文献   

11.
Unlike crystalline silicon, quasi-monocrystalline porous silicon (QMPS) layers have a top surface with small voids in the body. What is more pertinent to the present study is the fact that, at a given wavelength of interest for solar cells, these layers are often reported, in the literature, to have a higher absorption coefficient than crystalline silicon. The present study builds on existing literature, suggesting an analytical model that simulates the performance of an elementary thin QMPS (as an active layer) solar cell. Accordingly, the effects that the interface states located at the void-silicon interface and that the porosity of this material have on the cell parameters are investigated. Furthermore, the effects of the optimum base doping, QMPS thickness, and porosity on the photovoltaic parameters were taken into consideration. The results show that the optimum base doping depends on the QMPS thickness and porosity. For an 8 μm thickness, the film QMPS layer gives a 35.4 mA/cm2 for short-circuit current density, 15% for conversion efficiency, and 527 mV for open-circuit voltage when the value of the interface states is about 1012 cm−2 and the base doping is about 2×1018 cm−3 under AM 1.5 conditions.  相似文献   

12.
Measurements of the excess carrier lifetime of diffused and undiffused, thermally oxidized silicon samples are used to show that the presence of a phosphorus diffusion results in a modification of the interface defect properties, resulting in significantly higher surface recombination velocity compared to undiffused samples. In addition, for undiffused samples, positive and negative charges are demonstrated to be equally effective at passivating the silicon surface. Both results hold for (100) and (111) oriented samples, as well as for samples subjected to various post‐oxidation treatments. The results may have practical implications particularly for the design of rear contacted solar cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Carrier concentration spikes at the epilayer/substrate interface were observed in some two-dimensional electron gas AIGaAs/GaAs structures grown by low pressure organometallic vapor phase epitaxy. Using secondary ion mass spectroscopy, the carrier spikes were correlated with indium. Under certain growth conditions an anomalous interfacial layer, which is compositionally inhomogeneous, is formed producing an enhanced carrier density. Procedures are described which reduce the presence of indium at the epilayer/substrate interface and eliminate the carrier spike.  相似文献   

14.
Front silicon heterojunction and interdigitated all‐back‐contact silicon heterojunction (IBC‐SHJ) solar cells have the potential for high efficiency and low cost because of their good surface passivation, heterojunction contacts, and low temperature fabrication processes. The performance of both heterojunction device structures depends on the interface between the crystalline silicon (c‐Si) and intrinsic amorphous silicon [(i)a‐Si:H] layer, and the defects in doped a‐Si:H emitter or base contact layers. In this paper, effective minority carrier lifetimes of c‐Si using symmetric passivation structures were measured and analyzed using an extended Shockley–Read–Hall formalism to determine the input interface parameters needed for a successful 2D simulation of fabricated baseline solar cells. Subsequently, the performance of front silicon heterojunction and IBC‐SHJ devices was simulated to determine the influence of defects at the (i)a‐Si:H/c‐Si interface and in the doped a‐Si:H layers. For the baseline device parameters, the difference between the two device configurations is caused by the emitter/base contact gap recombination and the back surface geometry of IBC‐SHJ solar cell. This work provides a guide to the optimization of both types of SHJ device performance, predicting an IBC‐SHJ solar cell efficiency of 25% for realistic material parameters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Using thinner wafers can largely reduce the cost of silicon solar cells. One obstacle of using thinner wafers is that few methods can provide good dopant concentration for the back surface field (BSF) and good ohmic contact while generated only in low bowing. In this paper, we have demonstrated the screening–printing B and Al (B/Al) mixture metallization film technique, making use of the screen‐printing technique and the higher solubility of B in silicon to form a B/Al‐BSF. This technique can raise the carrier concentration in the BSF by more than one order of magnitude and reduce the back surface recombination at a low firing temperature (≤800 °C). We have also shown that through the new technique, the metallization paste thickness at the rear could be reduced largely, which however did not degrade the solar cell efficiency. All these efforts are aiming for pushing forward the application of thinner wafers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The evolution of Si bulk minority carrier lifetime during the heteroepitaxial growth of III–V on Si multijunction solar cell structures via metal‐organic chemical vapor deposition (MOCVD) has been analyzed. In particular, the impact on Si lifetime resulting from the four distinct phases within the overall MOCVD‐based III–V/Si growth process were studied: (1) the Si homoepitaxial emitter/cap layer; (2) GaP heteroepitaxial nucleation; (3) bulk GaP film growth; and (4) thick GaAsyP1‐y compositionally graded metamorphic buffer growth. During Phase 1 (Si homoepitaxy), an approximately two order of magnitude reduction in the Si minority carrier lifetime was observed, from about 450 to ≤1 µs. However, following the GaP nucleation (Phase 2) and thicker film (Phase 3) growths, the lifetime was found to increase by about an order of magnitude. The thick GaAsyP1‐y graded buffer was then found to provide further recovery back to around the initial starting value. The most likely general mechanism behind the observed lifetime evolution is as follows: lifetime degradation during Si homoepitaxy because of the formation of thermally induced defects within the Si bulk, with subsequent lifetime recovery due to passivation by fast‐diffusing atomic hydrogen coming from precursor pyrolysis, especially the group‐V hydrides (PH3, AsH3), during the III–V growth. These results indicate that the MOCVD growth methodology used to create these target III–V/Si solar cell structures has a substantial and dynamic impact on the minority carrier lifetime within the Si substrate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Extremely low upper‐limit effective surface recombination velocities (Seff.max) of 5.6 and 7.4 cm/s, respectively, are obtained on ~1.5 Ω cm n‐type and p‐type silicon wafers, using silicon nitride (SiNx) films dynamically deposited in an industrial inline plasma‐enhanced chemical vapour deposition (PECVD) reactor. SiNx films with optimised antireflective properties in air provide an excellent Seff.max of 9.5 cm/s after high‐temperature (>800 °C) industrial firing. Such low Seff.max values were previously only attainable for SiNx films deposited statically in laboratory reactors or after optimised annealing; however, in our case, the SiNx films were dynamically deposited onto large‐area c‐Si wafers using a fully industrial reactor and provide excellent surface passivation results both in the as‐deposited condition and after industrial‐firing, which is a widely used process in the photovoltaic industry. Contactless corona‐voltage measurements reveal that these SiNx films contain a relatively high positive charge of (4–8) × 1012 cm−2 combined with a relatively low interface defect density of ~5 × 1011 eV−1 cm−2. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease of reflectance. The longer is the anodizing time, the lower is the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in short wavelength range. A minimum reflectance of 3.86 % at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.  相似文献   

19.
Porous silicon(PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte.Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover,the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated.The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance.The longer the anodizing time is,the lower the reflectance.Moreover,an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range.A minimum reflectance of 3.86%at 460 nm is achieved for a short anodizing time of 2 min.Furthermore,the reflectance spectrum of the sample,which was etched in 3 vol.%TMAH for 25 min and then anodized for 20 min,is extremely flat and lies between 3.67%and 6.15%in the wavelength range from 400 to 1040 nm.In addition,for a short anodizing time,a slight increase in the effective carrier lifetime is observed.Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.  相似文献   

20.
The effects of passivation with two different passivants, ZnS and CdTe, and two different passivation techniques, physical vapor deposition (PVD) and molecular beam epitaxy (MBE), were quantified in terms of the minority carrier lifetime and extracted surface recombination velocity on both MBE-grown medium-wavelength ir (MWIR) and long-wavelength ir HgCdTe samples. A gradual increment of the minority carrier lifetime was reported as the passivation technique was changed from PVD ZnS to PVD CdTe, and finally to MBE CdTe, especially at low temperatures. A corresponding reduction in the extracted surface recombination velocity in the same order was also reported for the first time. Initial data on the 1/f noise values of as-grown MWIR samples showed a reduction of two orders of noise power after 1200-Å ZnS deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号