首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Nanocomposites containing carbon nanotubes (CNTs) as nanofillers and poly[ethylene‐co‐(acrylic acid)] (PEAA) or a polymer miscible mixture of PEAA and poly(2‐ethyl‐2‐oxazoline) (PEOx) as a matrix were prepared by the solution‐evaporation method with minimal damage to nanotubes. CNTs were prepared by chemical vapor deposition (CVD) with ethanol as the source of carbon. Raman spectroscopy confirmed the presence of single walled carbon nanotubes (SWNTs). High resolution transmission electron microscopy (HRTEM) showed the formation of multi walled carbon nanotubes (MWNTs). Thermal and mechanical properties of the nanocomposites were studied by analyzing samples containing different amounts of CNTs. The degree of crystallinity (Xc) of the PEAA‐based nanocomposite containing a smaller amount of CNTs was larger (Xc = 17.0%) than both the one of pure PEAA (Xc = 14.6 %) and PEAA‐based nanocomposite containing higher amounts of CNTs (Xc = 15.0%). The Young's modulus, ultimate stress, deformation at break, and toughness obtained from unidirectional tensile tests of the CNTs (1 wt%)‐PEAA nanocomposite were higher than both the one of pure PEAA and CNTs (5 wt%)‐PEAA nanocomposite. When a polymer mixture of PEAA/PEOx (containing 80 wt% of PEAA) was used as a matrix, a better mechanical response was also detected for nanocomposite containing 1 wt% CNTs. The nanocomposites containing small amounts of CNTs prepared here have potential to be used as coatings of metal or glass surfaces expecting a better mechanical performance than the one of pure matrix. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

2.
Nanocomposites of poly(lactide) (PLA) and the PLA plasticized with diglycerine tetraacetate (PL‐710) and ethylene glycol oligomer containing organo‐modified montmorillonites (ODA‐M and PGS‐M) by the protonated ammonium cations of octadecylamine and poly(ethylene glycol) stearylamine were prepared by melt intercalation method. In the X‐ray diffraction analysis, the PLA/ODA‐M and plasticized PLA/ODA‐M composites showed a clear enlargement of the difference of interlayer spacing between the composite and clay itself, indicating the formation of intercalated nanocomposite. However, a little enlargement of the interlayer spacing was observed for the PLA/PGS‐M and plasticized PLA/PGS‐M composites. From morphological studies using transmission electron microscopy, a finer dispersion of clay was observed for PLA/ODA‐M composite than PLA/PGS‐M composite and all the composites using the plasticized PLA. The PLA and PLA/PL‐710 composites containing ODA‐M showed a higher tensile strength and modulus than the corresponding composites with PGS‐M. The PLA/PL‐710 (10 wt %) composite containing ODA‐M showed considerably higher elongation at break than the pristine plasticized PLA, and had a comparable tensile modulus to pure PLA. The glass transition temperature (Tg) of the composites decreased with increasing plasticizer. The addition of the clays did not cause a significant increase of Tg. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

3.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

4.
In the present study, solvent casted bio-based blends of polylactic acid (PLA) and epoxidized soybean oil (ESO) were prepared at varied composition of PLA: ESO of 95:5, 90:10, 85:15, 80:20 and 75:25 wt%. The shape memory polymer (SMP) nanocomposite films of optimized PLA/ESO blend (80:20) were prepared using same solvent casting method at three different loadings (1, 3 and 5 wt%) of acid functionalized multiwalled carbon nanotubes (COOH-MWCNT). The FTIR spectra confirmed acid functionalization of MWCNT and the molecular interactions by intermolecular hydrogen bonding between PLA and ESO. Mechanical properties of the PLA, plasticized PLA with 20 wt% of ESO and its nanocomposites were investigated by tensile measurements. Thermal properties such as Tm, Tc, Tg, Xc, degradation temperature of PLA and its modified forms were studied using DSC and TGA. SEM was used to observe surface morphology of plasticized PLA. Among all, PLA?+?20wt%ESO?+?3wt%COOH-MWCNT shows optimum mechanical and thermal performance, which was taken to perform electroactive shape recovery test. Finally, the electroactive shape recovery of the resulting nanocomposite with 3 wt% COOH-MWCNT was investigated by a fold deploy “U”-shape bending test.  相似文献   

5.
A strategy based on carbon nanotubes (CNTs)‐containing sizing dispersion has been implemented to fabricate nanocomposite preforms and their hybrid multiscale composites. The state of pristine CNTs and carboxylic acid functionalized CNTs (CNTs–COOH) in sizing dispersion was effectively monitored by on‐line measuring electrical conductivity. The effects of different CNTs coating applied onto glass fabric on wettability of nanocomposite fibrous reinforcement with epoxy matrix were evaluated using scanning electron microscopy and capillary experiment. A CNTs‐COOH loading of 0.5 wt% gave rise to 97% and 30°C increases in the storage modulus (G′) and glass transition temperature of the resulting hybrid composites, respectively. The enhanced thermomechanical properties of the CNTs hybrid composites are closely related to the stable CNTs sizing dispersion and uniform coating onto fiber reinforcement. The mechanism for reinforcing composites through toughening resin region with CNTs desorbing from primary fiber surface during impregnation has been identified. POLYM. COMPOS. 37:979–986, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
To improve interactions between carbon nanotubes (CNTs) and poly(vinylidene fluoride) (PVDF) matrix, multiwalled CNTs (MWCNTs) were successfully coated with amphiphilic polyvinylpyrrolidone (PVP) using an ultrasonication treatment performed in aqueous solution. It was found that PVP chains could be attached noncovalently onto the nanotubes' surface, enabling a stable dispersion of MWCNTs in both water and N,N‐dimethylformamide. PVP‐coated MWCNTs/PVDF nanocomposite films were prepared by a solution casting method. The strong specific dipolar interaction between the PVP's carbonyl group (C?O) and the PVDF's fluorine group C?F2 results in high compatibility between PVP and PVDF, helping PVP‐coated MWCNTs to be homogenously dispersed within PVDF. Fourier transform infrared and X‐ray diffraction characterization revealed that the as‐prepared nanocomposite PVDF films exhibit a purely β‐polymorph even at a very low content of PVP‐wrapped MWCNTs (0.1 wt%) while this phase is totally absent in the corresponding unmodified MWCNTs/PVDF nanocomposites. A possible mechanism of β‐phase formation in PVP‐coated MWCNTs/PVDF nanocomposites has been discussed. Furthermore, the tensile properties of PVDF nanocomposites as function of the content in PVP‐coated MWCNTs were also studied. Results shows that the addition of 2.0 wt% of PVP‐coated MWCNTs lead to a 168% increase in Young's modulus and a 120% in tensile strength. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

7.
Nano‐fillers play an important role in the final structure and properties of nanocomposites. The objective of the work presented here was to prepare nanocomposite films of chitosan/α‐zirconium phosphate using a casting process, with α‐zirconium phosphate (α‐ZrP) as nano‐filler and chitosan as matrix. The effects of α‐ZrP on the structure and properties of the nanocomposites were investigated. X‐ray diffraction patterns showed that α‐ZrP crystals were intercalated by n‐butylamine. The results from scanning electron microscopy and transmission electron microscopy indicated that α‐ZrP could be uniformly dispersed in the chitosan matrix when α‐ZrP loading in the composites was less than 2 wt%. A strong interaction between α‐ZrP and chitosan formed during the film‐forming process. Tensile testing showed that the tensile strength and elongation at break of nanocomposite films achieved maximum values of 61.6 MPa and 58.1%, respectively, when α‐ZrP loading was 2 wt%. The parameter B calculated from tensile yield stress according to the Pukanszky model was used to estimate the interfacial interaction between the chitosan matrix and α‐ZrP. Films with a loading of 2 wt% α‐ZrP had the highest B value (3.2), indicating the strongest interfacial interaction. The moisture uptake of the nanocomposites was reduced with addition of α‐ZrP. It can be concluded that α‐ZrP as nano‐filler in a chitosan matrix can enhance the mechanical properties of nanocomposites due to the strong interactions between α‐ZrP and chitosan. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Tri‐(butanediol‐monobutyrate) citrate (TBBC) as a new plasticizer for poly(lactic acid) (PLA) was synthesized via a two‐step esterification. The chemical structure of TBBC was characterized by 1H‐nuclear magnetic resonance. The studies on solubility parameters, transparence, and storage stability indicated the good miscibility between PLA and TBBC. The glass transition, crystallization, thermal, and mechanical properties of PLA plasticized by TBBC were evaluated. With an increase in TBBC content, the glass transition temperature (Tg), melting point (Tm), and the cold crystallization temperature (Tcc) of plasticized PLA gradually shifted to a lower temperature. The elongation at break and flexibility were greatly improved by the addition of TBBC. After 30 days of storage, PLA plasticized with up to 20 wt% of TBBC exhibited good storage stability and remained the original transparence and mechanical properties. The flexibility of PLA/TBBC films can be tuned by changing TBBC content. The corresponding crystalline morphology and structure were investigated by Polarizing optical microscope and X‐ray diffraction as well. This study revealed that TBBC was miscible with PLA and may therefore be a promising plasticizer for PLA‐based packaging materials. POLYM. ENG. SCI., 55:205–213, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
As an effort to compare the influence of several types of functionalized carbon nanotubes (CNTs) upon the mechanical and thermal properties of nanocomposites prepared with a poly(ε‐caprolactone) (PCL) as matrix and functionalized CNTs as fillers; nanocomposites of PCL–CNTs were studied in this study. CNTs were synthesized by chemical vapor deposition using dry ethanol as the carbon source. High resolution scanning electron microscopy, high resolution transmission electron microscopy, and Raman and infrared spectroscopies were used to characterize the CNTs obtained. Four chemical synthesis routes were exploited to add different types of chemical groups onto the surface of purified CNTs. Specifically, the authors inserted: (i) N‐methylpyrrolidine, (ii) carboxyl and hydroxyl, (iii) urethane, and (iv) phenylmethanol groups onto CNTs surface. Nanocomposites were synthesized by in situ polymerization of ε‐caprolactone (ε‐CL) in presence of 1 wt% of each type of functionalized CNTs. Young's moduli of the nanocomposites prepared with N‐methylpyrrolidine or carboxyl and hydroxyl functionalized CNTs are higher than the one of pure PCL, whereas all the mechanical properties of the nanocomposites containing urethane or phenylmethanol groups evaluated at the break point were higher than those of pure PCL. Thermal stability of all the nanocomposites studied improved with respect to pure PCL. POLYM. COMPOS.,, 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
Tapioca starch (TS), poly(lactic acid) (PLA), and Cloisite 30B nanocomposite foams, with four clay contents of 1, 3, 5, 7 wt%, were prepared by a melt‐intercalation method. Selected structural, thermal, physical, and mechanical properties were characterized using X‐ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetry analyses, and an Instron universal testing machine, respectively. XRD results indicated that intercalation of TS/PLA into the nanoclay layers occurred in all four nanocomposite foams. At the same time, tactoid structures were observed in all nanocomposite foams but to a lesser extend with 1 and 3 wt% clay contents. Effect of clay content on melting temperature (Tm), onset degradation temperature, radial expansion ratio, unit density, bulk compressibility and bulk spring index of the nanocomposites were investigated. Among the four nanocomposites, 3 wt% clay content produced significantly different (p < 0.05) properties. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

11.
Waterborne polyurethane (WBPU) and multiwalled carbon nanotubes (CNTs) composite films with 0–4.0 wt% CNTs were prepared by ultrasonic dispersion of carboxylic acid‐functionalized CNTs in WBPU followed by emulsion casting process. The elongations at break of the WBPU/CNTs composites increase with the incorporation of CNTs. The tensile strength and crystallinity of the nanocomposite films with lower CNTs contents (<2 wt%) increase obviously; while the tensile strengths of the composites with more CNTs (≥2 wt%) decrease, in contrast to the pure PU film. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that the CNTs are uniformly dispersed in the composites incorporated with lower CNTs contents (≤1.5 wt%). However, aggregation of CNTs increased with increasing CNTs content in the WBPU/CNTs composites, causing the macrophase separation. The dispersion state of the CNTs affects the crystallinity of the PU matrix and the phase separation of the composites, which are two key factors to influence the mechanical properties of the WBPU/CNTs composites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

12.
The low molecular weight (Mw) polylactic acid‐g‐natural rubber (PLA‐g‐NR) was synthesized by grafting the maleated natural rubber (MNR) with low molecular weight PLA at a weight ratio of 1:1 in toluene at 80°C. Two types of MNR (MNR10 and MNR20) having anhydride moieties of 10 and 20 wt%, respectively, were prepared. The reaction was followed by IR analysis. Next, the obtained PLA‐g‐NR was blended with pristine PLA using a twin‐screw extruder at PLA to PLA‐g‐NR weight ratios of 90:10, 80:20, 70:30, and 60:40 followed by compression to obtain specimens for testing. In case of 10 wt% PLA‐g‐NR having MNR10, it was found that blending of PLA with PLA‐g‐NR resulted in a 200% improvement in impact strength and twofold percent elongation at break (flexibility). Further SEM analysis confirmed that PLA‐g‐NR was compatible with PLA matrix. In contrast, NR was present as disperse particles which exhibited poor adhesion to PLA. From these findings, it was also found that PLA‐g‐NR was capable of improving the properties of PLA more than NR due to the fact that it exhibited higher compatibility. POLYM. ENG. SCI., 54:2770–2776, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
In order to improve the dispersion of carbon nanotubes (CNTs) in polyimide (PI) matrix and the interfacial interaction between CNTs and PI, 4,4′‐diaminodiphenyl ether (ODA)‐functionalized carbon nanotubes (CNTs‐ODA) were synthesized by oxidation and amidation reactions. The structures and morphologies of CNTs‐ODA were characterized using Fourier transform infrared spectrometer, transmission electron microscopy, and thermal gravimetric analysis. Then a series of polyimide/amino‐functionalized carbon nanotube (PI/CNT‐ODA) nanocomposites were prepared by in situ polymerization. CNTs‐ODA were homogeneously dispersed in PI matrix. The influence of CNT‐ODA content on mechanical properties of PI/CNT‐ODA nanocomposites was investigated. It was found that the mechanical properties of nanocomposites were enhanced with the increase in CNT‐ODA loading. When the content of CNTs‐ODA was 3 wt%, the tensile strength of PI/CNT‐ODA nanocomposites was up to 169.07 MPa (87.11% higher than that of neat PI). The modulus of PI/CNTs‐ODA was increased by 62.64%, while elongation at break was increased by 66.05%. The improvement of the mechanical properties of PI/CNT‐ODA nanocomposites were due to the strong chemical bond and interfacial interaction between CNTs‐ODA and PI matrix. POLYM. COMPOS., 35:1952–1959, 2014. © 2014 Society of Plastics Engineers  相似文献   

14.
This paper reports on the thermal behavior and mechanical properties of nanocomposites based on unsaturated polyester resin (UP) modified with poly(ɛ‐caprolactone) (PCL) and reinforced with an organically modified clay (cloisite 30B). To optimize the dispersion of 30B and the mixing of PCL in the UP resin, two different methods were employed to prepare crosslinked UP–PCL‐30B hybrid nanocomposites. Besides, two samples of poly(ɛ‐caprolactone) of different molecular weight (PCL2: Mn = 2.103g.mol−1 and PCL50: Mn = 5.104g.mol−1) were used at several concentrations (4, 6, 10 wt%). The 30B concentration was 4 wt% in all the nanocomposites. The morphology of the samples was studied by scanning electron microscopy (SEM). The analysis of X‐ray patterns reveals that intercalated structures have been found for all ternary nanocomposites, independently of the molecular weight, PCL concentration and the preparation method selected. A slight rise of the glass transition temperature, Tg, is observed in UP/PCL/4%30B ternary nanocomposites regarding to neat UP. The analysis of the tensile properties of the ternary (hybrid) systems indicates that UP/4%PCL2/4%30B nanocomposite improves the tensile strength and elongation at break respect to the neat UP while the Young modulus remains constant. POLYM. COMPOS., 35:827–838, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
Polylactide (PLA) nanocomposite was prepared by melt blending of PLA and transition metal ion (TMI) adsorbed montmorillonite (MMT). PLA nanocomposite was characterized for mechanical performance, and the results revealed that the tensile modulus, flexural modulus, and impact strength were increased marginally. The nanocomposite was optimized at 5 wt% of TMI‐modified MMT (TMI‐MMT) loading. Thermogravimetric analysis displayed increase in onset of degradation temperature, and differential scanning calorimetry showed marginal increase in glass transition temperature (Tg) and melting temperature (Tm) in case of PLA nanocomposites, when compared with virgin PLA. The flammability testing of nanocomposites indicated good fire retardance characters. X‐ray diffraction patterns of TMI‐MMT and the corresponding nanocomposites indicated an intercalation of the metal ions into the clay interlayer. Fourier transform infrared spectroscopy analysis indicate formation of [Zn(EDA)2]2+ and [Cu(EDA)2]2+ complexes in the MMT interlayer. Dynamic mechanical analysis shows increase in glass transition temperature (Tg) and storage modulus (E′) in case of PLA nanocomposites reinforced with 5 wt% modified MMT. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Ethanediamine‐modified zeolitic imidazolate framework (ZIF)‐8 particles (ZIF‐8‐NH2) is synthesized and incorporated in the poly(vinyl alcohol) (PVA) matrix to fabricate novel PVA/ZIF‐8‐NH2 mixed matrix membranes (MMMs) for pervaporation dehydration of ethanol. The PVA/ZIF‐8‐NH2 MMMs exhibit enhanced membrane homogeneity and separation performance because of the higher hydrophilicity and restricted agglomeration of the particles, as compared to corresponding MMMs loaded with unmodified particles. The effect of ZIF‐8‐NH2 loading in the MMMs is studied and the MMM with a 7.5 wt % ZIF‐8‐NH2 loading shows the best pervaporation performance for ethanol dehydration at 40°C. Various characterization techniques (Fourier transform infrared, scanning electron microscope, contact angle, sorption test, etc.) are used to investigate the MMMs loaded with ZIF‐8 and ZIF‐8‐NH2 particles. The impact of operation conditions on pervaporation performance is also performed. The performance benchmarking shows that the MMMs have superior separation factors and comparable flux to most other PVA hybrid membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1728–1739, 2016  相似文献   

17.
Poly(1,3‐butylene adipate) (PBA) as the plasticizer for poly(lactic acid) (PLA) and carbon black (CB) as conductive filler, electrically conductive polymer composites (CPC) with different CB and PBA contents were prepared. Fourier transform infrared revealed that the interaction existed between PLA/PBA matrix and CB filler, and PBA could improve this interaction. The rheology showed that CB could obviously improve the apparent viscosity and decrease the fluidity of the composites, but just the reverse for PBA. PLA/PBA/CB composites exhibited the low electrical percolation thresholds of 0.516, 1.20, 2.46, and 2.74 vol% CB at 30, 20, 10, and 0 wt% PBA. The conductivity of the composite containing 3.98 vol% CB and 30 wt% PBA reached 1.67 S/cm. Scanning electron microscopy revealed that the addition of PBA facilitated the dispersion of PLA/CB composites. PBA could dramatically increase the elongation at break of plasticized PLA. But high‐PBA content caused the lowering of tensile strength. With the increasing of CB contents, the enforcement effect on the plasticized PLA became more obvious. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

18.
This article presents a novel approach to compatibilize Kraft lignin with polyethylene that involves the use of modified poly (styrene‐co‐ethylene‐co‐butylene‐co‐styrene) (SEBS) as unreactive compatibilizers. As SEBS shows no compatibilizing effect on Kraft lignin‐polyethylene composites, SEBS was functionalized via nitration followed by amination to obtain nitrated (SEBS‐NO2) and aminated (SEBS‐NH2) SEBS. The compatibilizing effects of SEBS derivatives were studied by means of morphological and mechanical analyses. The results show that SEBS‐NO2 is less effective than SEBS‐NH2, the later displaying comparable compatibilizing efficiency to a commercial reactive compatibilizer based on maleated polyethylene. Overall, compatibilization was found to decrease lignin particle size. Addition of SEBS‐NH2 varying between 1% and 10% improved the tensile strength of composites by up to 96%, elongation at break by up to 64%, and impact strength by up to 48%. Finally, the crystallinity and density of the resulting composites were also studied. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41040.  相似文献   

19.
Novel carboxylic poly(arylene ether nitrile)s (CPEN) functionalized carbon nanotubes (CPEN‐f‐CNTs) were successfully prepared by a simple and effective solvent–thermal route. The CPEN‐f‐CNTs were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PEN) nanocomposites. The SEM characterization of the PEN nanocomposites revealed that the CPEN‐f‐CNTs present better dispersion and interfacial compatibility in the PEN matrix, which was confirmed by the linear rheological analysis (Cole–Cole plots) as well. Consequently, the improved thermal stability (increased initial and maximum decomposition temperature) and enhanced mechanical properties (tensile strength and modulus) were obtained from nanocomposites using CPEN‐f‐CNTs. More importantly, the PEN/CPEN‐f‐CNTs nanocomposites not only show a high dielectric constant but also have low dielectric loss. For example, a dielectric constant of 39.7 and a dielectric loss of 0.076 were observed in the PEN composite with 5 wt% CPEN‐f‐CNTs loading at 100 Hz. Therefore, the flexible PEN/CPEN‐f‐CNTs nanocomposites with outstanding mechanical, thermal and dielectric properties will find wide application in the high energy density capacitors. POLYM. COMPOS., 37:2622–2631, 2016. © 2015 Society of Plastics Engineers  相似文献   

20.
A series of biodegradable polylactide‐based polyurethanes (PLAUs) were synthesized using PLA diol (Mn = 3200) as soft segment, 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI) as hard segment, and 1,4‐butanediol as chain extender. The structures and properties of these PLAUs were studied using infrared spectroscopy, differential scanning calorimetry, tensile testing, and thermomechanical analysis. Among them, the MDI‐based PLAU has the highest Tg, maximum tensile strength, and restoration force, the TDI‐based PLAU has the lowest Tg, and the IPDI‐based PLAU has the highest tensile modulus and elongation at break. They are all amorphous. The shape recovery of the three PLAUs is almost complete in a tensile elongation of 150% or a twofold compression. They can keep their temporary shape easily at room temperature (20 °C). More importantly, they can deform and recover at a temperature below their Tg values. Therefore, by selecting the appropriate hard segment and adjusting the ratio of hard to soft segments, they can meet different practical demands for shape memory medical devices. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号