首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this study, we present a study of polypropylene/bentonite composites where stearic acid was used as both a surface and interface modifier during the compounding of composites. The concentration of bentonite was 1.5, 2.5, 5.0, and 10 parts per hundred. The composites were characterized by impact resistance and tensile tests, rheological analysis, the dispersion state of the filler observed by optical microscopy, and interaction between bentonite and stearic acid, as analyzed by Fourier transform infrared spectroscopy. No chemical interaction was found between bentonite and stearic acid. Composites with modified bentonite and stearic acid used as interface modifiers increased the elongation at break; these samples also showed better dispersion of the filler in comparison with the other compounds. In addition, stearic acid acted as a lubricant, favoring the interaction of the polymer with the filler and decreasing the viscosity of the compounds. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42264.  相似文献   

2.
The effects of type of processing of polypropylene (PP)/wollastonite composites on mechanical properties and dispersion state were investigated. The concentration in weight of the filler in the compounds was of 2.5%, 5%, and 10%, respectively. Stearic acid was used as an interface modifier for the PP–wollastonite system. Wollastonite was also modified with stearic acid. The infrared spectra did not show any chemical changes between unmodified and modified wollastonites. The interactions between wollastonite and stearic acid were mainly physical. The compounds with interface modifier (stearic acid) showed the higher values in impact strength and elongation at break, as well as the best dispersion state. Qualitative chemical analysis on scanning electronic microscopy detected the presence of the acid stearic in the interface. POLYM. COMPOS., 35:1184–1192, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

4.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites have been prepared by melt intercalation using organomontmorillonite and conventional twin screw extrusion. The dispersibility of silicate layers of the montmorillonite in the composites was investigated by using X‐ray diffractometer and transmission electron microscopy (TEM). The silicate layers of montmorillonite are dispersed at the nanometer level in the PP matrix, as revealed by X‐ray and TEM results. The tensile strength of PP/MMT is not much improved compared with pure PP or conventional filled composites. However, the impact strength is greatly improved at lower content of MMT. © 2000 Society of Chemical Industry  相似文献   

5.
We report preparation and characterization of nanoclay from Indian bentonite and imported nanoclays, and their compounding with polypropylene (PP) and maleic anhydride‐grafted PP (MA‐g‐PP) in twin screw extruder. The compounded polymer/nanoclay nanocomposites (PNCs) are molded into a standard specimen for studying its tensile, flexural and impact strength. A wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) study demonstrates intercalation of PP in nanoclays rather than exfoliation for both, indigenous and imported nanoclays. The tensile modulus increased by 41 and 39% for PNC1 (PNC with imported nanoclay) and PNC2 (PNC with indigenous nanoclay) with respect to PP. The flexural modulus for PNC1 and PNC2 also increases by 23 and 22% due to incorporation of 5% nanoclay in PP along with 5% MA‐g‐PP. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

6.
The improvement in thermal and mechanical properties of Nanocomposites prepared with unsaturated polyester (UP) as polymer matrix and various loadings of amino‐modified nano kaolinite clay as filler has been studied. Mechanical stirring and ultrasonication resulted in better dispersion of the clay. For curing polyester resin, cobalt naphthenate was used as accelerator and MEKP as initiator. Dynamic Mechanical Analysis (DMA) was carried out to find storage and loss modulus. Thermal stability was found through thermogravimetric analysis and the evaluation of structure and morphology of the nanocomposites were done through XRD, SEM, and TEM. Nanocomposite with 3 phr of amino modified clay has shown higher storage modulus and an improved thermal stability of UP/clay nanocomposites has been established. Tensile strength and toughness of the composite have been found to achieve maximum values at 1 phr of clay and the storage modulus has had an improvement of 38% compared to neat UPR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43245.  相似文献   

7.
Alkyl pyridinium, 1‐vinyl alkyl imidazolium, 1,3‐dialkyl imidazolium, and tetraalkyl phosphonium bromides were successfully used as intercalants for the preparation of highly thermally stable organophilic montmorillonites. Nanocomposites of linear low density polyethylene (LLDPE) and linear low density polyethylene grafted with maleic anhydride (LLDPE/LLDPE‐g‐MAH) were prepared from those organoclays. The micro‐ and nano‐dispersions were analyzed through X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM): intercalation and/or partial exfoliation were found to occur only for formulations based on organoclays having an initial basal distance higher than 20 Å, suggesting the existence of a critical interfoliar distance for the delamination of silicate layers in a noninteracting polymer matrix. The properties of the nanocomposites were analyzed through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and oscillatory rheometry. The dynamic crystallization of LLDPE was not significantly affected by the presence of clay. TGA in oxidative atmosphere proved to be very sensitive to the dispersion state of the organoclay: the thermal stability was drastically enhanced for intercalated and partially exfoliated formulations. However, the inherent thermal stability of the organoclay did not appear to influence significantly the overall thermal stability of the composite in the range of temperatures investigated (160–230°C). POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

8.
In this work, polypropylene/clay nanocomposites with 0.5, 1, 3, and 5 wt % of montmorillonite (MMT) (unmodified clay) were prepared by intensive mixing at 50 rpm and 10 min of mixing. For the highest clay content (5 wt %), the initial materials or the processing conditions were changed to study their independent effect. On one hand, 10 wt % of PP‐graft‐MA (PP‐g‐MA) was incorporated or MMT was replaced by organomodified clays (C10A and C30B). On the other side, for the initial system, the speed of rotation (100 and 150 rpm) and the mixing time (5 and 15 min) were altered. In all cases, the state of the clay inside the matrix (DRX), the degree of dispersion in the micro (SEM) and nano (TEM) scales, and the rheological and mechanical properties were analyzed. It was found that the stiffness increased with clay content, whereas tensile and impact strength did not significantly change. Although intercalated structures were observed in the composites with unmodified clay, in the composites with modified clay or PP‐g‐MA, improved dispersion of clay in PP was found. The mechanical properties increased accordingly. The degree of dispersion of the filler in the matrix appeared to be unaffected by the changes in the processing conditions introduced. Finally, the elastic modulus was modeled by using an effective filler‐parameter model based on Halpin–Tsai equations, which also allowed estimating the relative degree of dispersion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
In this article, polypropylene (PP)/clay/carbon nanotube (CNT) composites were prepared via a solution blending method. Sound transmission loss (STL), determined with an impedance tube, was used to characterize their soundproofing properties. The STL for the PP/4.8 wt % clay/0.5 wt % CNT composite was about 15–21 dB higher than that for pure PP at high frequencies (3200–6400 Hz) and about 8–14 dB higher at low frequencies (580–620 Hz). X‐ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the crystallinity and the microstructure. A synergistic effect on the STL was established between the structure of the homogeneous dispersion and strong interfacial adhesion. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Wood plastic composites (WPCs) are attracting a lot of interests because they are economic, environmentally friendly, and show fairly good performance. To improve the performance of a wood/polypropylene (PP) composite, an organoclay was incorporated as a nanosize filler in this work. WPCs were prepared by melt blending followed by compression molding, and their performance was investigated by universal testing machine, izod impact tester, dynamic mechanical analyzer, thermal mechanical analyzer, differential scanning calorimetry, and TGA. Maleic anhydride polypropylene copolymer (MAPP) was used to increase compatibility between the PP matrix and wood particles and also improve the dispersion and exfoliation of the organoclay in the PP matrix. XRD analysis showed that the matrix of the WPCs with organoclay had intercalated structure. The SEM images of the WPCs with MAPP showed improved interfacial adhesion between the matrix and wood particles. The degree of water absorption increased with immersion time, but it could be restrained by incorporating MAPP. The performance of the WPCs was improved by the incorporation of the organoclay. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The aim of this study was to use nanocomposites of polypropylene (PP) and montmorillonite (MMT), prepared by melt intercalation in a twin-screw extruder, as a food packaging material. The nanocomposites were evaluated by thermal, mechanical, and morphological analyses. Measurements of oxygen and water vapor permeability were also conducted to the nanocomposites. Besides, orange juice was used as modeling food and its physical–chemical and microbiological properties were determined. Despite of no significant changes in tensile properties were observed to the nanocomposites, the impact strength presented a substantial enhancement and the rigidity as well. Besides, MMT have shown a high capacity to improve oxygen barrier properties of PP. Electronic microscopy revealed certain homogeneity, showing some MMT-exfoliated lamellae in the PP matrix. Regarding the package efficacy, the orange juice quality was maintained after 10 days of storage. Concluding, this study seems to clarify a little more the claimed efficiency of nanocomposites as food packing materials.  相似文献   

12.
Poly(trimethylene terephthalate) (PTT)/polypropylene (PP) blend nanocomposites were prepared by melt mixing of PTT, PP, and organically modified clay. The phase morphologies of the PTT/PP nanocomposites and the distribution of the clay in the nanocomposites were investigated using scanning electron microscopy, transmission electron microscopy (TEM), and wide angle X‐ray diffraction. When PP is the dispersed phase, the domain size of the PP phase is decreased significantly with increasing the clay content from 0 to 5 wt %. In contrast, when PTT is the dispersed phase, the dimension of the PTT phase is a little larger in the presence of 2 wt % clay compared with the case of without clay. TEM observations indicate that the clay is mainly distributed at the phase interfaces along the phase borderlines. In addition, some intercalated clay tactoids (multilayer particles) are observed in the PTT matrix whereas no discernable clay particles can be found in the PP phase, indicating that the affinity of clay with PTT is higher than with PP. In the presence of 5 wt % PP‐graft‐maleic anhydride, the phase morphology is much finer, and most clay is exfoliated and distributed at the phase interfaces forming phase borderlines in polygonal shape. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
In this study, we investigated the performances of a hydroxy ethyl methacrylate grafted PP (PP-g-HEMA) and a glycidyl methacrylate grafted PP (PP-g-GMA) as compatibilizers in PP/clay nanocomposites. The compatibilizers were prepared by melt grafting with a radical initiator. Since the PP-g-MA is successfully and widely used in the PP/clay nanocomposites, we also studied three PP-g-MAs containing different amounts of MA and having different molecular weights for a comparison. PP/clay nanocomposites compatibilized by the PP-g-HEMA and the PP-g-GMA show a similar level of the clay interlayer distances with those of the PP-g-MAs. We also investigated the effect of molecular weights of the compatibilizers. In general, the compatibilizer of lower molecular weight was observed to exhibit lower performance as a compatibilizer. It is observed that an increase of polar group content in the modified PP (PP-g-HEMA, PP-g-GMA, and PP-g-MA) always accompanies the molecular weight reduction, which deteriorates the mechanical properties. Thus, we prepared the PP-g-HEMA and PP-g-GMA by incorporation of a styrene comonomer. The compatibilizers (PP-g-HEMA-co-styrene and PP-g-GMA-co-styrene) thus obtained show good performance as a compatibilizer in the PP/clay nanocomposites. We observed that the PP/clay composites containing the PP-g-HEMA-co-styrene and the PP-g-GMA-co-styrene have very well-balanced mechanical properties.  相似文献   

14.
Results of an investigation into an unmodified‐montmorillonite (MMT)‐filled nanocomposite based on plasticized starch are reported. Data on the influence of MMT content on the tensile mechanical properties of the material are presented. Particular attention is given to the water vapor permeability of the nanocomposite. It is found that the resistance to water permeation of plasticized starch can be improved considerably by introducing a rather small amount of the filler into it. Data on the influence of MMT content on the coefficients of moisture diffusion, solubility, and permeability are reported. Also, a simple method for determining the effect of irregularly oriented platelike filler particles on the permeability of the composite material is suggested. The calculation results are compared with experimental data. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
陈鹏 《应用化工》2014,(12):2246-2248
采用两步法制备聚丙烯/蒙脱土纳米复合材料PP/MMT,考察了工艺配方和制备条件对材料力学性能的影响。结果表明,两步法制备工艺对PP/MMT的力学性能有明显提高,最佳工艺配方:蒙脱土含量为2%,相容剂含量为15%,最佳制备条件:加工温度200℃,螺杆转速50 r/min。在此条件下制备的PP/MMT复合材料中蒙脱土达到纳米级分散。  相似文献   

16.
The polymerization kinetics and thermal properties of dicyanate/clay nanocomposites were investigated. A type of organically modified clay was used as nanometer‐size fillers for the thermosetting dicyanate resin. Differential scanning calorimetry (DSC) was used to study the curing behavior of the dicyanate/clay nanocomposite systems. The polymerization rate of the nanocomposite systems increased with increasing clay content. An autocatalytic reaction mechanism could adequately describe the polymerization kinetics of the dicyanate/clay nanocomposite systems. The polymerization kinetic parameters were determined by fitting the DSC conversion data to the proposed kinetic equation. The glass‐transition temperature of the dicyanate/clay nanocomposites increased with increasing clay content. The thermal decomposition behavior of the dicyanate/clay nanocomposites was investigated by thermogravimetric analysis. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1955–1960, 2004  相似文献   

17.
Morphology assessment plays an important role as the ultimate properties of the processed nanocomposites mainly depend upon the morphology. This study focuses on the evaluation of polypropylene/clay nanocomposite structure using rheological and transmission electron microscopic investigation. Melt processing of nanocomposite was carried out on a co‐rotating twin screw extruder. Maleic anhydride grafted polypropylene (PP‐g‐MA) was used as a compatibilizer to facilitate better mixing of clay in polypropylene. The effect of compatibilizer to clay ratio on dispersion was analyzed through rheological data. An increase in complex viscosity and storage modulus with increase in compatibilizer content is observed at lower frequency region. Shifting of crossover frequencies to a lower value also indicate better exfoliation. Improved exfoliated morphology was also corroborated by Cole–Cole and inverse loss tangent plots. Transmission electron microscopy (TEM) micrograph based unique statistical image analysis was carried out using ImageJ software. A compatibilizer to clay content of 2 : 1 was found to be the optimum composition which was further supported by dielectric and mechanical properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4464–4473, 2013  相似文献   

18.
The tensile and impact properties of amine‐cured diglycidyl ether of bisphenol A based nanocomposites reinforced by organomontmorillonite clay nanoplatelets are reported. The sonication processing scheme involved the sonication of the constituent materials in a solvent followed by solvent extraction to generate nanocomposites with homogeneous dispersions of the organoclay nanoplatelets. The microstructure of the clay nanoplatelets in the nanocomposites was observed with transmission electron microscopy, and the clay nanoplatelets were well dispersed and were intercalated and exfoliated. The tensile modulus of epoxy at room temperature, which was above the glass‐transition temperature of the nanocomposites, increased approximately 50% with the addition of 10 wt % (6.0 vol %) clay nanoplatelets. The reinforcing effect of the organoclay nanoplatelets was examined with respect to the Tandon–Weng and Halpin–Tsai models. The tensile strength was improved only when 2.5 wt % clay nanoplatelets were added. The Izod impact strength decreased with increasing clay content. The failure surfaces of the nanocomposites were observed with environmental scanning electron microscopy and confocal laser scanning microscopy. The roughness of the failure surface was correlated with the tensile strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 281–287, 2005  相似文献   

19.
Small amount of large surface area graphene (G) is expected to significantly alter functional properties of polymers. The property enhancement is a function of degree of exfoliation and dispersion of G as well as its compatibility with base polymer. However, nonpolar nature of polyolefins such as polypropylene (PP) restricts homogeneous dispersion of G, leading to significant agglomeration and properties reduction. In this work, two compatibilizers, poly (ethylene-co-butyl acrylate) (EBA) (new compatibilizer) and PP-grafted-maleic anhydride (MA-PP) (conventional compatibilizer) were compared to enhance the dispersion efficacy of G in PP. The EBA-compatibilized nanocomposites exhibited 44% increase in the Young's modulus compared to 32% increment in MA-PP-compatibilized nanocomposites. Higher elongation at break for EBA-compatibilized nanocomposites is attributed to lower degree of crystallinity in these nanocomposites. On the other hand, EBA-compatibilized nanocomposites showed significantly improved thermal stability compared to MA-PP-compatibilized nanocomposites. The results indicate that EBA may act as a potential compatibilizer for G/PP nanocomposites.  相似文献   

20.
Heat ageing and thermal stability of a silicone rubber (SR) filled with montmorillonite clay (MMT) was investigated. Three types of rubber nanocomposites were prepared with highly exfoliated Cloisite 30B (SR/C30B), intercalated/exfoliated Cloisite Na+ (SR/Na+MMT), and highly intercalated Cloisite 20A (SR/C20A). This study showed that the SR/C30B nanocomposite exhibited excellent heat resistance in comparison to the other two nanocomposites and neat SR as revealed by higher retention strength. The thermal stability of the rubber in air was strongly dependent on the clay morphology and increased in the following order: highly intercalated/exfoliated SR/Na+MMT < highly intercalated SR/C20A < highly exfoliated SR/C30B. The thermogravimetric analyses of the SR/C30B nanocomposite showed a substantial increase in the final residue in comparison with the neat SR. This indicated a major improvement in the thermal stability of the rubber containing the exfoliated clay, which was also supported by the higher activation energy of decomposition measured for the nanocomposite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41061.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号