首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3,3′‐Bisazidomethyl oxetane‐3‐azidomethyl‐3′‐methyl oxetane (BAMO‐AMMO) tri‐block copolymer was successfully synthesized by azidation of a polymeric substrate containing bromo leaving groups, and an alternative block energetic thermoplastic elastomer (ETPE) was prepared by chain extension reaction. The tri‐block copolymer was characterized by Fourier transform infrared (FTIR), 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction (XRD), and thermogravimetric analysis (TGA). It was found that the composition of the copolymer is nearly 1 : 1; crystallinity of the copolymer (71.81 %) is less than that of PBAMO (78.30 %). This is due to a partly mixture between soft and hard segments. Kinetic result shows that a crosslinking network is formed after the decomposition of azide group. Tensile strength of alternative block ETPE is 150 % of traditionally synthesized BAMO‐AMMO ETPE.  相似文献   

2.
The time‐ and temperature‐related crystallization process for the structure transitions of asymmetric crystalline‐crystalline diblock copolymers from the melt to crystallites was investigated with synchrotron simultaneous small‐angle/wide‐angle X‐ray scattering. Two asymmetric poly(ethylene oxide)‐poly(ε‐caprolactone) diblock copolymers were chosen. It is found in the course of the copolymer crystallization that the shorter blocks are uncrystallizable in both of the asymmetric diblock copolymers and final lamellar structures are formed in both of them. The final lamellar structure was confirmed from atomic force microscopy observations. The small‐angle X‐ray scattering data collected were analyzed with different methods for the early stage of crystallization. Guinier and Debye‐Bueche plots indicate that there are neither isolated domains nor correlated domains formed before the formation of lamellae in the asymmetric diblock copolymers during the crystallization process. The structure evolution was calculated according to the correlation function, and the soft nanoconfined crystallization behavior is discussed. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
This paper deals with the synthesis of a series of six‐armed star diblock copolymers based on poly(l ‐lactide) (PLLA) and poly(?‐caprolactone) (PCL) by ring‐opening polymerization using stannous octoate as catalyst and the preparation of polylactide (PLA)/PCL linear blends using a solution blending technique, while keeping the PLA‐to‐PCL ratio comparable in both systems. The thermal, rheological and mechanical properties of the copolymers and the blends were comparatively studied. The melting point and the degree of crystallinity were found to be lower for the copolymers than the blends due to poor folding property of star copolymers. Dynamic rheology revealed that the star polymers have lower elastic modulus, storage modulus and viscosity as compared to the corresponding blends with similar composition. The blends show two‐phase dispersed morphology whereas the copolymers exhibited microphase separated morphology with elongated (worm‐like) microdomains. The crystalline structures of the copolymers were characterized by larger crystallites than their blend counterparts, as estimated using Sherrer's equation based on wide‐angle X‐ray diffraction data. © 2016 Society of Chemical Industry  相似文献   

4.
Energetic thermoplastic elastomers containing energetic groups, such as azido, nitrato, nitro, and so forth, are emerging as attractive binder systems for advanced solid rocket propellants. Poly[3,3‐bis(Azidomethyl) oxetane (BAMO)‐co‐3‐azidomethyl‐3‐methyl oxetane (AMMO)] comprising hard crystalline BAMO segment and the soft/amorphous AMMO segment in various molar ratios (80 : 20, 50 : 50 and 20 : 80) were synthesized during the present work. The homo polymers namely Poly‐BAMO and Poly‐AMMO were also synthesized. All the polymers and copolymers were characterized by spectral and thermal methods. They were found to be thermally stable. The most promising 80 : 20 copolymer softened at 56°C with Tg of −36°C. Rheological studies were also carried out to determine their suitability as a binder in explosive and propellant formulations. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The heterofunctional condensation of 1,3‐dichloro‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane with dihydroxydiphenylsilane at various ratios of initial compounds in the presence of amines was carried out, and α,ω‐dihydroxy(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane oligomers with various degrees of condensation were obtained. Corresponding block copolymers were obtained by heterofunctional polycondensation of synthesized α,ω‐dihydroxy(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane oligomers with α,ω‐dichlorodimethylsiloxanes in the presence of amines. Thermogravimetry, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray analysis were carried out on the synthesized block coplymers. Differential scanning calorimetry and wide‐angle X‐ray studies of these copolymers showed that their properties were determined by the ratio of the lengths of the flexible linear poly(dimethylsiloxane) and rigid poly(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane fragments in the main macromolecular chain. Two‐phase systems were obtained with specific flexible and rigid fragment length values in synthesized block copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3462–3467, 2006  相似文献   

6.
Hybrid block copolymers find applications in drug delivery, tissue engineering, biomimetics and bioimaging, amongst others, mainly due to their propensity to form phase‐separated microdomains as well as to the aggregation of their polypeptide segments. They not only enhance control over structure at the nanometre scale but also yield materials that can interface with various biosystems for different utilities. α‐Methoxy‐poly(ethylene glycol)‐block‐poly[?‐(benzyloxycarbonyl)‐l ‐lysine] hybrid block copolymers of varying degrees of polymerization, MPEGn‐b‐PLL(Z)m, were synthesized by N‐carboxyanhydride ring‐opening polymerization and characterized using infrared and NMR spectroscopy and gel permeation chromatography. Their secondary structures and bulk conformations were investigated using circular dichroism spectroscopy and wide‐angle X‐ray diffraction, respectively, whereas thermogravimetric analysis (TGA), derivative TGA and differential scanning calorimetry were employed for thermal analyses. The resulting block copolymers exhibited microphase separation and suppressed degrees of crystallinity with increasing l ‐lysine content and adopted α‐helix and β‐sheet secondary structures in aqueous milieu. The copolymers were also more thermally stable than their constituent homopolymers. Interestingly, the effects of the retention of the N?‐benzyloxycarbonyl moiety on polymer properties proved considerable. The hybrid block copolymers herein afforded hierarchical structures of potential utility in the biomedical and pharmaceutical fields. © 2012 Society of Chemical Industry  相似文献   

7.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
A BAMO‐AMMO alternative block (BAAB)‐based thermoplastic composite propellant with 80 % solid content was prepared using BAAB energetic thermoplastic elastomer (ETPE) as the binder, and the formulation was optimized through energy calculation. The densities, heats of explosion, glass‐transition temperatures, and mechanical properties of the samples were determined by surface tension measurements, oxygen bomb calorimetry, differential scanning calorimetry and static tensile tests, respectively. The results showed that this composite propellant can reach a standard theoretical specific impulse of 275.45 s (10 MPa), a density of 1.8102 g cm−3, a heat of explosion of 6256 kJ kg−1, a Tg of −50.46 °C, a tensile strength of 1.56 MPa and an elongation at break of 20 %, thus presenting a superior comprehensive property to BAMO‐AMMO random block (BARB)‐based thermoplastic composite propellant.  相似文献   

9.
丁三醇三硝酸酯与高分子黏合剂的相互作用   总被引:1,自引:0,他引:1  
运用半经验分子轨道理论PM3方法计算丁三醇三硝酸酯(BTTN)分别与聚乙二醇(PEG)、端羟基聚丁二烯(HTPB)、缩水甘油叠氮基聚醚(GAP)、3-叠氮甲基-3-甲基环氧丁烷聚合物(AMMO)和3,3-双(叠氮甲基)环氧丁烷聚合物(BAMO)等高分子黏合剂所形成的混合体系模型物,求得稳定几何构型.由色散能校正电子相关,求得其结合能.计算结果表明,高分子黏合剂HTPB、AMMO与BTTN的结合能(绝对值)随着高分子聚合度的增加而增大,而BAMO、GAP、PEG与BTTN间的结合能呈不同规律.GAP、AMMO和BAMO与BTTN的结合能略大于HTPB和PEG.  相似文献   

10.
用分子轨道(MO)方法在PM3水平上研究三乙二醇二硝酸酯(TEGDN)分别与环氧乙烷/四氢呋喃共聚醚(PET)、聚乙二醇(PEG)、端羟基聚丁二烯(HTPB)、缩水甘油叠氮基聚醚(GAP)、3-叠氮甲基-3-甲基环氧丁烷聚合物(AMMO)和3,3-双(叠氮甲基)环氧丁烷聚合物(BAMO)6种高分子黏结剂所形成的混合体系模型物,求得稳定几何构型。经色散能校正计算,近似求得其相互作用能(ΔE)。整体上讲,AMMO和BAMO与TEGDN的相互作用能大于其他4种高分子黏结剂。其结果为TEGDN与高分子黏结剂之间的相容性研究提供基础数据和理论指导。  相似文献   

11.
The liquid‐crystalline ordering and fluidity of energetic diblock copolymers based on poly[3,3‐bis(azidomethyl) oxetane] (BAMO) and 3‐nitratomethyl‐3′‐methyloxetane (NMMO) were investigated by the dissipative particle dynamics method. The results show that these copolymers, with moderate BAMO block lengths (x's), experienced the disorder, nematic, and smectic phases with decreasing temperature. The nematic phase was suppressed when the rod length was too long or short. After the formation of the smectic phase, the fluidity had a sharp decline. The temperature forming the smectic phase was defined as the order–disorder transition temperature (TODT) and depended strongly on x. A simple scaling rule, TODTe?x, between TODT and x was constructed. The effect of the soft NMMO block fraction on the fluidity emerged before the formation of the smectic phase. These results can help researchers design and synthesize new energetic copolymers with an appropriate melting temperature range for use as binders of solid propellants. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
硝化甘油与高分子黏合剂混合体系相互作用的理论研究   总被引:1,自引:0,他引:1  
运用MO-PM3方法计算了硝化甘油(NG)与高分子黏结剂聚乙二醇(PEG)、端羟基聚丁二烯(HTPB)、缩水甘油叠氮基聚醚(GAP)、3-叠氮甲基-3-甲基环氧丁烷聚合物(AMMO)和3,3-双(叠氮甲基)环氧丁烷聚合物(BAMO)的混合模型体系的几何结构(聚合度n=1,2,3,4),由色散能校正电子相关近似求得其分子间相互作用能(△E).结果表明,当n=4时,5个混合体系的相互作用能为-49~-60kJ/mol.除GAP和BAMO以外,当n值增大时,混合体系的相互作用能增加.混合体系中,两个子体系的原子与原子之间最短距离为0.270~0.340nm.  相似文献   

13.
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
In order to reveal the relationship between 3,3‐bis(azidomethyl) oxetane‐tetrahydrofuran copolyether (P(BAMO‐THF)) microstructure and its macro properties, the segment sequence structure of a kind of P(BAMO‐THF) was characterized using quantitative 13C‐NMR analysis. It was found that the P(BAMO‐THF) is composed of equimolar comonomers whose randomness factor (R) is 1.09, belonging to a quasi‐ideal random copolymer. Combining DSC and polarizing optical microscopy, it was verified that the thermal‐effect between 28 °C and 41 °C attributes to the melting of the P(BAMO‐THF)spherulites. Using WAXRD, it was suggested that the aggregation of BAMO micro‐blocks among P(BAMO‐THF) polymeric chains causes the formation of spherulites. The viscosity measurement clearly demonstrated that, below 30 °C or above 40 °C, the P(BAMO‐THF) viscosities change slowly as a function of temperature. Conversely, between 30 °C and 40 °C, its viscosities sharply decline with the increase in temperature because of the changes in its morphology.  相似文献   

15.
BACKGROUND: Biodegradable block copolymers have attracted particular attention in both fundamental and applied research because of their unique chain architecture, biodegradability and biocompatibility. Hence, biodegradable poly[((R )‐3 ‐hydroxybutyrate)‐block‐(D ,L ‐lactide)‐block‐(ε‐caprolactone)] (PHB‐PLA‐PCL) triblock copolymers were synthesized, characterized and evaluated for their biocompatibility. RESULTS: The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and thermogravimetric analysis showed that the novel triblock copolymers were successfully synthesized. Differential scanning calorimetry and wide‐angle X‐ray diffraction showed that the crystallinity of PHB in the copolymers decreased compared with methyl‐PHB (LMPHB) oligomer precursor. Blood compatibility experiments showed that the blood coagulation time became longer accompanied by a reduced number of platelets adhering to films of the copolymers with decreasing PHB content in the triblocks. Murine osteoblast MC3T3‐E1 cells cultured on the triblock copolymer films spread and proliferated significantly better compared with their growth on homopolymers of PHB, PLA and PCL, respectively. CONCLUSION: For the first time, PHB‐PLA‐PCL triblock copolymers were synthesized using low molecular weight LMPHB oligomer as the macroinitiator through ring‐opening polymerization with D ,L ‐lactide and ε‐caprolactone. The triblock copolymers exhibited flexible properties with good biocompatibility; they could be developed into promising biomedical materials for in vivo applications. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
In previous papers, the synthesis and characterization of OH‐terminated glycidyl azide‐r‐(3,3‐bis(azidomethyl)oxetane) copolymers (GA/BAMO) and poly‐3‐azidomethyl‐3‐methyl oxetane (pAMMO) by azidation of their respective polymeric substrates were described. The main objective was the preparation of amorphous azido‐polymers, as substitutes of hydroxy‐terminated polybutadiene (HTPB) in new formulations of energetic propellants. Here, the subsequent characterization of both the binders is presented. First of all, several isocyanates were checked in order to optimize the curing reaction, and then two small‐scale formulations of a propellant, based on aluminium and ammonium perchlorate, were prepared and characterized. Finally, the mechanical properties and burning rate were compared to those of a similar propellant based on HTPB as binder.  相似文献   

17.
BACKGROUND: An important strategy for making polymer materials with combined properties is to prepare block copolymers consisting of well‐defined blocks via facile approaches. RESULTS: Poly(hydroxyether of bisphenol A)‐block‐polydimethylsiloxane alternating block copolymers (PH‐alt‐PDMS) were synthesized via Mannich polycondensation involving phenolic hydroxyl‐terminated poly(hydroxyether of bisphenol A), diaminopropyl‐terminated polydimethylsiloxane and formaldehyde. The polymerization was carried out via the formation of benzoxazine ring linkages between poly(hydroxyether of bisphenol A) and polydimethylsiloxane blocks. Differential scanning calorimetry and small‐angle X‐ray scattering show that the alternating block copolymers are microphase‐separated. Compared to poly(hydroxyether of bisphenol A), the copolymers displayed enhanced surface hydrophobicity (dewettability). In addition, subsequent crosslinking can occur upon heating the copolymers to elevated temperatures owing to the existence of benzoxazine linkages in the microdomains of hard segments. CONCLUSION: PH‐alt‐PDMS alternating block copolymers were successfully obtained. The subsequent self‐crosslinking of the PH‐alt‐PDMS alternating block copolymers could lead to these polymer materials having potential applications. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
3,3‐Bis(azidomethyl)oxetane (BAMO) is the most widely known azido oxetane in terms of the number of its polymers and copolymers applied as energetic binders e.g. in rocket propellants and plastic formulations of explosive materials. However, this compound continues to be a rather expensive monomer today. The aim of this study was to find a suitable synthetic route to produce this monomer in a large scale and to optimize it. The chosen route of synthesis was based on the application of tosyl pentaerythritol derivatives as the starting material. The BAMO synthesis by this method involves three stages, namely: pentaerythritol tosylation, tritosylpentaerythritol cyclization to 3,3‐bis(tosylmethyl)oxetane (BTMO), and substitution of the BTMO tosyl groups with azido groups. In this work all the stages of the synthesis were optimized. BAMO was obtained in an overall yield of 61 %. The structure of the obtained compounds was verified by two techniques, namely: 1HNMR and FT‐IR.  相似文献   

19.
Poly(3,3‐bisazidomethyl oxetane/3‐azidomethyl‐3‐methyl oxetane) energetic thermoplastic elastomers (P(BAMO/AMMO) ETPEs) is one of the most valuable ETPEs in the field of energetic binders. P(BAMO/AMMO) ETPEs were prepared using different diisocyanates (TDI, HMDI, IPDI, and HDI) to investigate the influence of the diisocyanate on the performance of P(BAMO/AMMO) ETPEs. Mechanical properties and heats of formation were investigated. FT‐IR spectroscopy results showed that TDI‐based ETPE has the highest degree of hydrogen bonding with a value of 69.00 %. Mechanical test results showed that the TDI‐based ETPE has better mechanical property with maximum stress at 5.24 MPa and breaking elongation at 390 %. The order for degree of hydrogen bonding and mechanical property of different diisocyanate‐based ETPEs was TDI>HMDI>IPDI>HDI. The heats of formation were calculated by the group additivity method and by the heat of combustion method. The values of heats of formation for TDI‐based ETPE were 3.44 kJ g−1 and 3.75 kJ g−1 according to the two methods. Additionally, TDI‐based ETPE has a lager heat of formation than the other ETPEs.  相似文献   

20.
ABA‐type block copolymers composed of 2,5‐diphenyl‐1,3,4‐thiadiazole (DPTD) oligoester and poly(methyl methacrylate) (PMMA) segments (Mn = 16 200 and 23 000) were synthesized by atom‐transfer radical polymerization and their liquid‐crystalline (LC) and photoluminescence (PL) properties were examined. The structures of block copolymers were identified by Fourier transform infrared and 1H NMR spectroscopies. Differential scanning calorimetry measurement, polarizing microscopy observation and wide‐angle X‐ray analysis revealed that the block copolymers form thermotropic LC phase (smectic C) independent of molecular weights of PMMA segments, but a model polymer (PMMA segments having the DPTD unit in the central part) has no LC melt. Solution and solid‐state PL spectra indicated that all the block copolymers display blue emission arising from the DPTD unit. Their quantum yields are 17–21%, which increase with the PMMA chain lengths. The block copolymers have good aligned structures in the LC states, but their order parameter (S) values in sheared LC states were lower than those in the sheared LC compounds. The PL properties in the LC states were independent of the LC aligned structures. Cyclic voltammetry measurements showed that these block copolymers have deep HOMO levels compared with polymers composed of oxadiazole rings. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号