首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of dietary fats and oils in human nutrition is currently one of the key issues related to diet and health. Nutritional fats and oils contain both saturated and unsaturated fatty acids, mostly of cis‐configuration. Physiological functions of trans fatty acids in foods, especially their possible role in atherosclerosis, the level of blood cholesterol, and coronary heart disease is of concern, but still subject to controversy. Furthermore, the cancer prevention properties of conjugated linoleic acid isomers, present in small quantities in typical diets, remain to be confirmed. An overview on the occurrence and physiological considerations of trans fatty acids is given.  相似文献   

2.
3.
反式脂肪酸测定方法的研究   总被引:2,自引:0,他引:2  
简要介绍了反式脂肪酸(TFA)的生成途径及主要的食物来源,反式脂肪酸对人体健康的主要危害和影响,综述了反式脂肪酸的分析检测方法如气相色谱法、红外光谱法、Ag离子色谱技术、毛细管电泳法等,并比较了各种方法的优缺点。  相似文献   

4.
5.
6.
The present work was undertaken to study the metabolism of fatty acids with trans double bonds by rat hepatocytes. In liver mitochondria, elaidoyl-CoA was a poorer substrate for carnitine palmitoyltransferase I (CPT-I) than oleoyl-CoA. Likewise, incubation, of hepatocytes with oleic acid produced a more pronounced stimulation of CPT-I than incubation with trans fatty acids. This was not due to a differential effect of cis and trans fatty acids on acetyl-CoA carboxylase (ACC) activity and malonyl-CoA levels. Elaidic acid was metabolized by hepatocytes at a higher rate than oleic acid. Surprisingly, compared to oleic acid, elaidic acid was a better substrate for mitochondrial and, especially, peroxisomal oxidation, but a poorer substrate for cellular and very low density lipoprotein triacylglycerol synthesis. Results thus show that trans fatty acids are preferentially oxidized by hepatic peroxisomes, and that the ACC/malonyl-CoA/CPT-I system for coordinate control of fatty acid metabolism is not responsible for the distinct hepatic utilization of cis and trans fatty acids.  相似文献   

7.
The effect of trans fatty acids from partially hydrogenated soybean oil and butterfat on the formation of polyunsaturated fatty acids was investigated. Five groups of rats were fed diets that contained 20 wt% fat. The content of linoleic acid was adjusted to 10 wt% of the dietary fats in all diets, whereas the amount of trans fatty acids from partially hydrogenated soybean oil (PHSBO) was varied from 4.5 to 15 wt% in three of the five diets. The fourth group received trans fatty acids from butterfat (BF), while the control group was fed palm oil without trans fatty acids. Trans fatty acids in the diet were portionally reflected in rat liver and heart phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylinositol, and phosphatidylserine. Incorporation in the sn-1 position was compensated by a decrease in saturated fatty acids. Trans fatty acids were not detected in diphosphatidylglycerol. Compared to the presence in the dietary fats, 8t- and 10t-18:1 were discriminated against in the incorporation in PE and PC from liver and heart, whereas 9t- and 12t-18:1 were preferred. The formation of 20:4n-6 was not influenced by 4.5 wt% trans fatty acids (from PHSBO) but apparently was by 10 wt% in liver. In contrast, even a content of 2.5 wt% trans fatty acids from BF reduced the formation of 20:4n-6. The inhibitory effect of trans isomers on linoleic acid conversion was reflected less in heart than in liver and less for PE than for PC. Groups with trans fatty acids showed increased 22:6n-3 and 22:5n-3 deposition in liver and heart PE and PC.  相似文献   

8.
The link between the intake of industrially produced trans fatty acids and risk of coronary heart disease (CHD) has been reviewed recently. The authors concluded that elimination of industrially produced trans fatty acids from the USA diet might avert 22% of the 1.2 million CHD events in the USA every year. Denmark has introduced legislation which limits the trans fatty acid content of oils and fats destined for human consumption to 2% of total fatty acids. This has reduced trans fatty acid intake in Denmark to insignificant levels and it will be interesting to see what effects this has on risk of CHD. By contrast in the USA the FDA has chosen the labelling option which puts the onus on the consumer to make the right food choices although New York City has adopted a more interventionist approach in its restaurants and food outlets. The Danish approach is far more effective as can be seen from the amounts of trans fatty acids present in French fries and chicken nuggets purchased from McDonalds and KFC in the two countries.  相似文献   

9.
trans Isometric fatty acids of partially hydrogenated fish oil (PHFO) consist oftrans 20∶1 andtrans 22∶1 in addition to thetrans isomers of 18∶1, which are abundant in hydrogenated vegetable oils, such as in partially hydrogenated soybean oil (PHSBO). The effects of dietarytrans fatty acids in PHFO and PHSBO on the fatty acid composition of milk were studied at 0 (colostrum) and 21 dayspostpartum in sows. The dietary fats were PHFO (28%trans), or PHSBO (36%trans) and lard. Sunflower seed oil (4%) was added to each diet. The fats were fed from three weeks of age throughout the lactation period of Experiment 1. In Experiment 2 PHFO or “fully” hydrogenated fish oil (HFO) (19%trans), in comparison with coconut oil (CF) (0%trans), was fed with two levels of dietary linoleic acid, 1 and 2.7% from conception throughout the lactation period. Feedingtrans-containing fats led to secretion oftrans fatty acids in the milk lipids. Levels oftrans 18∶1 andtrans 20∶1 in milk lipids, as percentages of totalcis+trans 18∶1 andcis+trans 20∶1, respectively, were about 60% of that of the dietary fats, with no significant differences between PHFO and PHSBO. The levels were similar for colostrum and milk. Feeding HFO gave relatively lesstrans 18∶1 andtrans 20∶1 fatty acids in milk lipids than did PHFO and PHSBO. Only low levels ofcis+trans 22∶1 were found in milk lipids. Feedingtrans-containing fat had no consistent effects on the level of polyenoic fatty acids but reduced the level of saturated fatty acids and increased the level ofcis+trans monoenoic fatty acids. Increasing the dietary level of linoleic acid had no effect on the secretion oftrans fatty acids but increased the level of linoleic acid in milk. The overall conclusion was that the effect of dietary fats containingtrans fatty acids on the fat content and the fatty acid composition of colostrum and milk in sows were moderate to minor.  相似文献   

10.
Three surveys of the content of trans fatty acids (TFA) in foods on the Danish market were carried out before and after the Danish regulation was introduced in January 2004 restricting the use of industrially produced (IP)‐TFA to a maximum of 2 g per 100 g fat in any food product. For this purpose, food samples were collected in 2002–3, 2004–5, and 2006–7. Of these, 60 paired samples (defined as samples included in two of the three investigations and with higher levels of IP‐TFA in the first determination than in the second) were identified. Comparisons of the fatty acid profiles showed that, in 68% of the products (e.g. sweets, cakes and cookies as well as fast food such as pie and tortilla), IP‐TFA were mainly substituted with saturated fatty acids (SFA). In some cases, the SFA source was coconut fat, whereas in other products, palm oil was added instead of partially hydrogenated oils. However, in important cases like frying fats, healthier fat substitutes with monounsaturated fatty acids were used. The surveys showed that the IP‐TFA content has been reduced or removed from most products with originally high IP‐TFA content, like French fries, microwave oven popcorn and various bakery products, so that IP‐TFA are now insignificant for the intake of TFA in Denmark.  相似文献   

11.
Two gas chromatography (GC) procedures were compared for routine analysis of trans fatty acids (TFA) of vegetable margarines, one direct with a 100-m high-polarity column and the other using argentation thin-layer chromatography and GC. There was no difference (P>0.05) in the total trans 18∶1 percentage of margarines with a medium level of TFA (∼18%) made using either of the procedures. Both methods offer good repeatability for determination of total trans 18∶1 percentage. The recoveries of total trans isomers of 18∶1 were not influenced (P>0.1) by the method used. Fatty acid composition of 12 Spanish margarines was determined by the direct GC method. The total contents of trans isomers of oleic, linoleic, and linolenic acids ranged from 0.15 to 20.21, from 0.24 to 0.99, and from 0 to 0.47%, respectively, and the mean values were 8.18, 0.49, and 0.21%. The mean values for the ratios [cis-polyunsaturated/(saturated +TFA)] and [(cis-polyunsaturated + cis-monounsaturated)/(saturated +TFA)] were 1.25±0.39 and 1.92±0.43, respectively. Taking into account the annual per capita consumption of vegetable margarine, the mean fat content of the margarines (63.5%), and the mean total TFA content (8.87%), the daily per capita consumption of TFA from vegetable margarines by Spaniards was estimated at about 0.2 g/person/d.  相似文献   

12.
13.
Summary Weanling rats were fed diets containing triglycerides composed of bothcis andtrans fatty acids for 16 days. The animals were sacrificed, and the lipides were extracted quantitatively from the heart, liver, feces, and the rest of the carcass. Infrared analyses were carried out to determine the fate of thetrans acids.Trans acids with the double bond either in the 8 or 9 position are metabolized efficiently by the rat organism. Armour Fellow, University of Illinois, 1955–56.  相似文献   

14.

Background  

Fatty acid measurements especially trans fatty acid has gained interest in recent times. Among the various available biomarkers, adipose tissue is considered to be the best for the long term dietary intake but the invasive nature of tissue aspiration reduces its utility. Phlebotomy is a much less invasive method of sample collection when a large number of participants are involved in the study and therefore is an alternative, most suitable for large population based studies. In the present study fatty acid (with special emphasis on trans fatty acid) extraction from blood spotted and dried on filter paper was carried out to simplify the sample collection procedure and transportation.  相似文献   

15.
It is recommended that humans increase their consumption of omega‐3 polyunsaturated fatty acids (PUFA) because of many nutritional advantages. However, the oxidative instability of these fatty acids poses a problem regarding the sensory and nutritional quality of foods. It is clear that antioxidants need to be added to stabilize these lipids during food processing and storage, as well as to provide the body with enough antioxidant power to counteract any oxidative stress resulting from the increased intake of PUFA. However, we need more knowledge regarding the levels of antioxidant required for food stability and nutritional adequacy as well as the nature of antioxidant oxidation products and their toxicological significance.  相似文献   

16.
The adulteration of cold pressed oils (CPO) by refining or by blending with refined oils leads to an increase in their trans fatty acid (TFA) contents. The regulations of the European Union (EU) lay down strict processing conditions without any steam treatment for native olive oils and provide limits for TFA. However, German regulations allow a “steam washing” for CPO other than native olive oil and do not limit TFA. Thus, the TFA contents of such oils might exceed the limits for native olive oil. Modern capillary GLC serves as a quick tool for the detection of TFA. However, care should be taken to avoid the formation of TFA as artefacts during analysis. We evaluated the TFA contents in several oils labelled as “cold pressed” and the formation of TFA during “steam washing” and deodorization. Analysis of some seeds indicates that preliminary drying of the seeds may also contribute to TFA content.  相似文献   

17.
Milk analysis is receiving increased attention. Milk contains conjugated octadecadienoic acids (18∶2) purported to be anticarcinogenic, low levels of essential fatty acids, and trans fatty acids that increase when essential fatty acids are increased in dairy rations. Milk and rumen fatty acid methyl esters (FAME) were prepared using several acid-(HCl, BF3, acetyl chloride, H2SO4) or base-catalysts (NaOCH3, tetramethylguanidine, diazomethane), or combinations thereof. All acid-catalyzed procedures resulted in decreased cis/trans (Δ9c, 11t-18∶2) and increased trans/trans (Δ9t, 11t-18∶2) conjugated dienes and the production of allylic methoxy artifacts. The methoxy artifacts were identified by gas-liquid chromatography (GLC)-mass spectroscopy. The base-catalyzed procedures gave no isomerization of conjugated dienes and no methoxy artifacts, but they did not transesterify N-acyl lipids such as sphingomyelin, and NaOCH3 did not methylate free fatty acids. In addition, reaction with tetramethylguanidine coextracted material with hexane that interfered with the determination of the short-chain FAME by GLC. Acid-catalyzed methylation resulted in the loss of about 12% total conjugated dienes, 42% recovery of the Δ9c,11t-18∶2 isomer, a fourfold increase in Δ9t,11t-18∶2, and the formation of methoxy artifacts, compared with the base-catalyzed reactions. Total milk FAME showed significant infrared (IR) absorption due to conjugated dienes at 985 and 948 cm−1. The IR determination of total trans content of milk FAME was not fully satisfactory because the 966 cm−1 trans band overlapped with the conjugated diene bands. IR accuracy was limited by the fact that the absorptivity of methyl elaidate, used as calibration standard, was different from those of the other minor trans fatty acids (e.g., dienes) found in milk. In addition, acid-catalyzed reactions produced interfering material that absorbed extensively in the trans IR region. No single method or combination of methods could adequately prepare FAME from all lipid classes in milk or rumen lipids, and not affect the conjugated dienes. The best compromise for milk fatty acids was obtained with NaOCH3 followed by HCl or BF3, or diazomethane followed by NaOCH3, being aware that sphingomyelins are ignored. For rumen samples, the best method was diazomethane followed by NaOCH3.  相似文献   

18.
Metabolism and functions of highly unsaturated fatty acids: An update   总被引:5,自引:0,他引:5  
This review briefly examines the recent progress in knowledge about the synthesis and degradation of highly unsaturated fatty acids (HUFA) and their functions. Following the cloning of mammalian Delta6-desaturase (D6D), the D6D mRNA was found in many tissues, including adult brain, maternal organs, and fetal tissue, suggesting an active synthesis of HUFA in these tissues. The cloning also confirmed the long-postulated hypothesis that the same pathway is followed in n-6 and n-3 HUFA synthesis. Dietary n-6 and n-3 HUFA both induce fatty acid oxidation enzymes in peroxisomes when compared to their respective precursor polyunsaturated fatty acids. This suggests that peroxisomes may be the primary site of HUFA degradation when HUFA are supplied in excess from the diet. Peroxisome proliferators strongly induce the enzymes for the HUFA synthesis. The mechanism of this induction is currently unknown. Recent studies revealed new HUFA functions that are not mediated by eicosanoids. These functions include endocytosis/exocytosis, ion-channel modulation, DNA polymerase inhibition, and regulation of gene expression. These new discoveries will enable us to re-examine the underlying mechanisms for the classical symptoms of essential fatty acid deficiency as well as vitamin E deficiency. Progress has also been made in understanding the mechanism by which dietary HUFA reduce body fat deposition. One mechanism is induction of genes for fatty acid oxidation, which is mediated by peroxisome proliferator-activated receptor-alpha. Another likely mechanism is that HUFA suppress genes for fatty acid synthesis by reducing both mRNA and protein maturation of sterol regulatory element binding protein-1.  相似文献   

19.
20.
Trans fatty acids may be involved in atherosclerotic vascular diseases. We investigated the incorporation of dietary trans fatty acids and oleic acid into the serum triglycerides (TG), cholesterol esters (CE), and phospholipids (PL). Fourteen healthy female volunteers, aged 23.2±3.1 yr (mean±SD), body mass index 20.8±2.1 kg/m2 participated in this study. All subjects consumed both a trans fatty acid-enriched diet (TRANS diet) and an oleic acid-enriched diet (OLEIC diet) for 4 wk according to a randomized crossover design. Both experimental diet periods were preceded by consumption of a baseline diet for 2 wk which supplied 37% of total energy (E%) as fat: 18 E% from saturated fatty acids (SFA), 12 E% from monounsaturated fatty acids, and 6 E% from polyunsaturated fatty acids. Five E% of the SFA in the baseline diet was replaced by trans fatty acids (18∶1 t and 18∶2 c,t+18∶2t,t, where c is cis and t is trans) in the TRANS diet and by oleic acid (18∶1n-9) in the OLEIC diet. After the TRANS diet, the proportions of 18∶1t and 18∶2t increased (P <0.001) in all serum lipid fractions analyzed. The increase of 18∶1 t in TG and PL (1.80±0.28 vs. 5.26±1.40; 1.07±0.34 vs. 3.39±0.76 mol% of total fatty acids, respectively) was markedly higher than that in CE (0.44±0.07 vs. 0.92±0.26), whereas that of 18∶2t was nearly the same in all three fractions. The proportions of palmitic, stearic, arachidonic, and eicosapentaenoic acids in TG, CE, and PL and that of oleic acid in TG and CE were decreased when compared with the baseline value. In contrast, the proportion of palmitoleic acid in TG and PL and that of linoleic acid in PL increased on the TRANS diet. After consumption of the OLEIC diet, the proportion of oleic acid increased in all three lipid fractions analyzed, and the percentage increase was nearly the same in all fractions. In contrast, the proportions of 18∶1 t in TG and PL and 18∶2 t in TG and CE decreased when compared with the baseline value. In conclusion, a moderate increase in dietary trans fatty acids resulted in a marked incorporation into serum lipids and decreased the conversion of linoleic acid to its more unsaturated long-chain metabolites. Analysis of 18∶1 t from serum TG and PL seems to reflect reliably the dietary intake of this fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号