首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene‐co‐vinyl acetate) (EVA)/magnetite (Fe3O4) nanocomposite was prepared with different loading of Fe3O4 nanoparticles. The mixing and compounding were carried out on a two‐roll mixing mill and the sheets were prepared in a compression‐molding machine. The effect of loading of nanoparticles in EVA was investigated thoroughly by different characterization technique such as transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and technological properties. TEM analysis showed the uniform dispersion of filler in the polymer matrix and the dispersion of filler decreased with increase in filler content. XRD of the nanocomposite revealed the more ordered structure of the polymer chain. An appreciable increase in glass transition temperature was observed owing to the restricted mobility of Fe3O4‐filled EVA nanocomposite. TGA and flame resistance studies indicated that the composites attain better thermal and flame resistance than EVA owing to the interaction of filler and polymer segments. Mechanical properties such as tensile strength, tear resistance, and modulus were increased for composites up to 7 phr of filler, which is presumably owing to aggregation of Fe3O4 nanoparticle at higher loading. The presence of Fe3O4 nanoparticles in the polymer matrix reduced the elongation at break and impact strength while improved hardness of the composite than unfilled EVA. The change in technological properties had been correlated with the variation of polymer–filler interaction estimated from the swelling behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40116.  相似文献   

2.
This article reports the facile synthesis of copper sulfide (CuS)/polyaniline (PANI) nanocomposites by in situ polymerization. The composites were characterized by scanning electron microscopy (SEM), UV–visible and Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). SEM analysis showed that the metal sulfide nanoparticles were uniformly dispersed in the polymer matrix. The characteristic peaks in FTIR and UV–vis spectra of PANI were found to be shifted to higher wave numbers in PANI/CuS composite, which is attributed to the interaction of CuS nanoparticles with PANI chain. XRD pattern revealed the structurally ordered arrangement of polymer composite and this regularity increases with increase in concentration of nanoparticles. Glass transition temperature of the nanocomposite increased with increase in the concentration of nanoparticles and it indicated the ordered arrangement of the polymer composite than PANI. TGA studies indicated excellent thermal stability of polymer nanocomposite. The electrical properties of nanocomposites were studied from direct current and alternating current resistivity measurement. Conductivity, dielectric constant, and dissipation factor of the nanocomposite were significantly increased with the increase in CuS content in the nanocomposite. The enhancement of these properties suggests that the proposed PANI/CuS nanocomposites can be used as multifunctional materials for nanoelectronic devices. POLYM. ENG. SCI., 54:438–445, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
Nanocomposites based on neodymium‐doped titanium dioxide (Nd‐TiO2)/poly(n‐butyl methacrylate) (PBMA) have been prepared by an in situ polymerization of butyl methacrylate monomer with varying concentrations of Nd‐TiO2 nanoparticles. The resulting nanocomposites have been analyzed by ultraviolet (UV)–Visible spectroscopy, Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis, and impedance analyzer (TGA). The results of UV and FTIR spectroscopy have indicated the interaction of nanoparticles with the PBMA matrix. Spherically shaped nanoparticles with an average size of 10–25 nm have been revealed in the TEM and their homogeneous dispersion, and interaction of polymer matrix has been confirmed by SEM and XRD studies. The thermal stability and glass transition temperature of the composites were significantly enhanced by the addition of nanoparticles. The AC conductivity and dielectric properties of nanocomposites have been found to be higher than pure PBMA, and the maximum electrical properties have been observed for 7 wt% composite. The reinforcing nature of the nanoparticles in PBMA has been reflected in the improvement in tensile strength measurements. The result indicated that the tensile strength of nanocomposites have greatly enhanced by the addition of Nd‐TiO2 nanoparticles whereas the elongation at break decreases with the loading of nanofillers. To understand the mechanism of reinforcement, tensile strength values have been correlated with various theoretical modeling. The research has been found to be promising in the development of novel materials with enhanced tensile strength, dielectric constant, and thermal properties, which may find potential applications in energy storage and nanoelectronic devices. J. VINYL ADDIT. TECHNOL., 25:9–18, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
The main aim of this study is to investigate the effect of silver‐doped zinc oxide (Ag‐ZnO) loading on the structural, morphological, thermal and electrical properties, and gas sensing behavior of polypyrrole (PPy)/phenothiazine (PTZ)‐blend nanocomposites. The composites are characterized by FTIR, XRD, SEM, TEM, DSC, TGA, and impedance studies. FTIR spectra exhibit the presence of Ag‐ZnO in the PPy/PTZ blend. XRD analysis shows that the semicrystalline behavior of the polymer blend is greatly enhanced by the addition of Ag‐doped ZnO particles. Uniform dispersion of nanoparticles in the polymer is obtained from SEM analysis. The TEM images confirm the presence of spherically shaped nanoparticles in PPy/PTZ blend with a size of 10–25 nm. The DSC measurement indicates that the glass transition temperature of PPy/PTZ blend was significantly improved in the presence of Ag‐doped ZnO nanoparticles. The thermal decomposition temperature of nanocomposite obtained from TGA shows an increase with increase in the content of Ag‐ZnO particles. The incorporation of Ag‐doped ZnO nanoparticles to PPy/PTZ blend exhibit increase in the AC conductivity and dielectric properties of the nanocomposite, due to the pilling of charges at the extended interface of the composite system. The DC conductivity of the nanocomposite increases with the loading of nanoparticles. The ammonia gas sensing performance of PPy/PTZ/Ag‐ZnO nanocomposite is analyzed, and the result shows that the fabricated blend composite can be used as a promising candidate for the easy access of gas molecules. J. VINYL ADDIT. TECHNOL., 26:187–195, 2020. © 2019 The Authors. Journal of Vinyl and Additive Technology published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers.  相似文献   

5.
Nitrile rubber (NBR) based nanocomposite consists of different concentrations of hydroxyapatite nanoparticles (HA) were prepared and characterized by FTIR, UV and X-ray diffraction studies. The surface morphology of the nanocomposites were analyzed using SEM and optical microscopy. The glass transition temperature and thermal stability of NBR and its nanocomposites were done by DSC and TGA respectively. The electrical properties such as AC conductivity, dielectric constant and dielectric loss tangent were investigated in the frequency range of 102–106 Hz at room temperature. The FTIR spectra confirmed the interfacial interaction between NBR and the HA nanoparticles. The shift in the UV peak with broadness of composite indicates the formation of nanoparticles within the macromolecular chain of NBR. XRD pattern ascertained the ordered arrangement of nanoparticles with a decrease in the amorphous nature of parent polymer. Both the glass transition temperature and the thermal stability of the nanocomposites were higher than pure NBR and the glass transition temperature improved with the increase in concentration of nanoparticles in NBR composite indicating the strong interfacial adhesion between the polymer and nanoparticles. From DSC studies, thermodynamic parameters such as enthalpy and entropy change of the composites were also evaluated. AC conductivity of the nanocomposite was much greater than NBR and the magnitude of conductivity enhanced with the addition of nanoparticles. The observed enhancement in dielectric constant and dielectric loss tangent of composite with the increase in concentration of nanoparticle was attributed to the increase in number of interfacial interaction between the polymer and the nanoparticles.  相似文献   

6.
Conducting polymer composites of polyindole (PIN) and copper–alumina (Cu–Al2O3) nanocomposites were synthesized by in situ polymerization of indole with different contents of Cu–Al2O3 nanoparticles. The polymer nanocomposites were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscope (TEM), differential scanning calorimetry, thermogravimetric analysis, and ammonia gas sensing performance was also analyzed. FTIR and XRD studies revealed the attachment of Cu–Al2O3 in the molecular chain of PIN. The presence of bright trapezoid channels and variation in morphology for different loading of nanoparticles were confirmed by SEM and TEM. The attachment of Cu–Al2O3 nanoparticles in the PIN matrix was confirmed through EDX spectroscopy. The glass transition temperature and thermal stability of the composites were greatly enhanced with the loading of Cu–Al2O3. Enhancement in alternating current conductivity, dielectric constant and the current–voltage characteristics of the prepared composite revealed the semiconducting nature of the system with an increase in the loading of nanoparticles. Also, nanocomposite exhibited an excellent sensitivity and fast response to ammonia gas. The evaluated result of the present study suggested that Cu–Al2O3 reinforced PIN hybrid is a good candidate for the fabrication of electrochemical devices.  相似文献   

7.
Conducting polymer nanocomposites of polyindole (PIN)/copper sulfide (CuS) were fabricated by in situ polymerization of indole with different concentration of CuS nanoparticles. These composites were examined by X‐ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and electrical studies. XRD analysis confirmed that the composite began to crystallize by the incorporation of CuS nanoparticles. The IR spectrum shows the intermolecular interaction between PIN and CuS. SEM images revealed that the nanoparticles were uniformly embedded in the entire substrate. Glass transition temperature was found to be increased with increase in concentration of nanoparticles, which showed an ordered structure of the samples. TGA results indicated that the fabricated PIN/CuS composite attains better thermal stability than pure PIN. The dc conductivity of nanocomposite was significantly increased with increase in content of CuS nanoparticle. An increase in ac electrical conductivity and dielectric properties of the composite were observed with increase in molar concentration of CuS nanoparticles. Thus, enhancements in these properties suggest that the fabricated PIN/CuS nanocomposite has potential application in the field of nanotechnology. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
A poly(vinyl cinnamate) (PVCin) composite was synthesized by a simple one step in situ polymerization of vinyl cinnamate with nickel oxide (NiO) nanoparticles. The structural, morphological and thermal properties of the nanocomposite were characterized using Fourier transform (FT)‐Raman, FT infrared (FTIR) and UV spectroscopies, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry and vibrating sample magnetometry (VSM) measurements. FT‐Raman, FTIR and UV spectroscopy results revealed the characteristic absorption and shifts of peaks of the polymer matrix, the shifts being attributed to the interaction of NiO nanoparticles with the polymer chains. The structural and morphological analysis using XRD, HRTEM and FESEM showed the uniform arrangement of nanoparticles within the polymer chains. VSM showed the ferromagnetic nature of the composite with an increasing saturation of magnetism. The glass transition temperature (Tg) of the composite was higher than that of pure PVCin and Tg of the composite increased with increasing nanoparticle content. The electrical resistivity of the nanocomposite was studied from AC and DC conductivity measurements. AC and dielectric properties were markedly enhanced in the whole range of frequency due to the presence of NiO nanoparticles. DC conductivity of the nanocomposite was much higher than that of PVCin and the conductivity of the nanocomposite increased with increasing content of NiO nanoparticles. © 2016 Society of Chemical Industry  相似文献   

9.
High transparent and UV‐shielding poly (styrene)‐co‐poly(methyl methacrylate) (PS‐PMMA)/zinc oxide (ZnO) optical nanocomposite films were prepared by solution mixing using methyl ethyl ketone (MEK) as a cosolvent. The films were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectra, high‐resolution transmission electron microscopy (HR‐TEM), and atomic force microscope (AFM). Cross‐section HR‐TEM and AFM images showed that the ZnO nanoparticles were uniformly dispersed in the polymer matrix at the nanoscale level. The XRD and FTIR studies indicate that there is no chemical bond or interaction between PS‐PMMA and ZnO nanoparticles in the nanocomposite films. The UV–vis spectra in the wavelength range of 200–800 nm showed that nanocomposite films with ZnO particle contents from 1 to 20 wt % had strong absorption in UV spectrum region and the same transparency as pure PMMA‐PS film in the visible region. The optical properties of polymer are greatly improved by the incorporation of ZnO nanoparticles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A magnetic polymer hybrid film (MPHF) with a thickness of ~80 μm, composed of iron oxide nanoparticles (IONPs) in a polystyrene (PS) matrix, was successfully prepared. Its structure and morphology were analyzed by HRTEM, XRD, and FTIR. The optical and magnetic behaviors were studied by UV–Vis spectroscopy and VSM, respectively. The main relaxation of the MPHF was characterized by dynamic mechanical analysis (DMA), and the molecular mobility was analyzed by a fractional Zener model (FZM). Results obtained by DMA reveal the mechanical manifestation of the α -relaxation for both, PS and MPHF, and how this process is modified by IONPs into MPHFs. Good agreement between experimental DMA spectra and the theoretical results calculated from the FZM was obtained. Fractional parameters a and b characterize the molecular mobility at low and high temperatures, respectively. These results show that at low temperatures ( a parameter), molecular mobility is slightly affected by the presence of IONPs, while at high temperatures ( b parameter), molecular mobility is affected in a greater degree. IONPs decrease the molecular mobility of PS matrix; this effect is more pronounced at temperatures above the glass transition temperature. These results validate the effect of IONPs on PS matrix considering future applications of the MPHFs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47840.  相似文献   

11.
Chlorinated styrene butadiene rubber (Cl-SBR)/ zinc sulfide (ZnS) nanocomposites were prepared by a simple two-roll mill mixing technique. The interaction between the ZnS nanoparticles and Cl-SBR was assessed using Fourier transform infrared (FTIR) and UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The dielectric constant, oil resistance, flame retardancy and the transport properties of nanocomposites with aromatic hydrocarbons were also analyzed with special attention to the loading of nanoparticles. The spectroscopic studies revealed the existence of a strong interfacial interaction between rubber chain and ZnS nanoparticles. TEM analysis showed the attachment of ZnS nanoparticles in the chlorinated SBR having nanosize region. SEM and XRD showed the uniform arrangement of nanoparticles in the elastomeric network. The presence of ZnS nanoparticles in the rubber matrix was confirmed through EDX spectroscopy. The thermal stability, flame retardancy and oil resistance properties of the nanocomposites were significantly enhanced by the addition of nanoparticles. Composite with 7 phr loading showed the maximum dielectric constant and beyond this loading, the dielectric property decreased due to the agglomeration of nanoparticles. Transport behavior of nanocomposites in benzene, toluene and xylene were analyzed in the temperature range of 27 to 70 °C. Swelling parameters such as rate constant, sorption, diffusion, and permeation coefficient were estimated. The mechanism of transport of the aromatic solvents in the filled Cl-SBR was found to be following anomalous mode. Temperature dependence of diffusion was used to study the activation parameters of the prepared samples.  相似文献   

12.
Recently, graphene and its derivatives have been used to develop polymer composites with improved or multifunctional properties. Exfoliated graphite nanoplatelets (GNP) reinforced composite materials based on blend of polyethylene terephthalate (PET), and polypropylene (PP) compatibilized with styrene–ethylene–butylene–styrene‐g‐maleic anhydride is prepared by melt extrusion followed by injection molding. Characterization of the composites' microstructure and morphology was conducted using field emission scanning electron microscopy, transmission electron microscopy (TEM), X‐ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). Tensile and impact strengths of test specimens were evaluated and the results showed maximum values at 3phr GNP in both the cases. Morphological studies showed that the GNPs were uniformly dispersed within the matrix. Results from XRD analysis showed uniformly dispersed GNPs, which may not have been substantially exfoliated. FTIR spectroscopy did not show any significant change in the peak positions to suggest definitive chemical interaction between GNP and the matrix. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40582.  相似文献   

13.
Homogeneous multiwalled carbon nanotube/montmorillonite hybrid filler (HMM) dispersion was prepared by co‐ultrasonication and was subsequently used to prepare ethylene‐co‐vinyl acetate (EVA) nanocomposites by solution blending method. XRD and TEM analysis of HMM confirm significant interaction between the montmorillonite (MMT) layers and multiwalled carbon nanotubes (MWCNT) in line with previous reports. Analysis of the nanocomposites shows the constituent fillers to be homogeneously dispersed in EVA matrix. Mechanical properties of neat EVA are remarkably improved with HMM content up to 3 wt% followed by reversion. Maximum improvement observed in tensile strength, elongation at break, and toughness are 424%, 109%, and 1122%, respectively. Results show maximum thermal stability at 4 wt% and best dielectric response at 1 wt% HMM content. Exceptional mechanical and dielectric properties of EVA nanocomposites attained may be attributed to homogeneous dispersion of fillers and improved polymer–filler interaction. Comparison shows excellent synergy between MWCNT and MMT towards mechanical reinforcement of EVA. POLYM. ENG. SCI., 58:1155–1165, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
Nanocomposites based on poly (n-butyl methacrylate) (PBMA) with various concentrations of titanium dioxide (TiO2) nanoparticles were synthesised by in situ free radical polymerisation method. The formation of nanocomposite was characterised by FTIR, UV, XRD, DSC, TGA, impedance analyser and flame retardancy measurements. FTIR and UV spectrum ascertained the intermolecular interaction between nanoparticles and the polymer chain. The XRD studies indicated that the amorphous region of PBMA decreased with the increase in content of metal oxide nanoparticles. The SEM revealed the uniform dispersion of nanoparticles in the polymer composite. The DSC and TGA studies showed that the glass transition temperature and thermal stability of the nanocomposites were increased with the increase in the concentration of nanoparticles. The conductivity and dielectric properties of nanocomposites were higher than pure PBMA and the maximum electrical property was observed for the sample with 7 wt% TiO2. As the concentration of nanoparticles increased above 7 wt%, the electrical property of nanocomposite was decreased owing to the agglomeration of nanoparticles in the polymer. Nanoparticles could impart better flame retardancy to PBMA/TiO2 composite and the flame resistance of the materials improved with the addition of nanoparticles in the polymer matrix.  相似文献   

15.
The compressive stress (pressure) sensitivity of dielectric properties has been studied on ethylene vinyl acetate (EVA)/polyaniline (Pani) composites prepared through In‐situ synthesis of polyaniline in the solution of insulating EVA matrix. It is observed that the dielectric constant and loss increase with the increase in applied pressure, that is some piezoelectric effect is observed for these composites. The dielectric properties are also found to increase with respect to time when subjected under constant pressure. It is seen that changes in dielectric constant and loss follow some exponential relationships with respect to applied pressure and time duration under constant stress, and the relaxation time for the composites can be calculated. The relaxation time decreases with the increase in concentration of Pani in a composite. However, a composite with lower Pani content exhibits relatively higher change in dielectric properties against applied pressure and time duration under compression compared to one with higher loading. Granular crew type morphology of Pani is observed through scanning electron microscopic (SEM) study. This study reveals that these EVA‐Pani composites can be used as dielectric sensor. POLYM. ENG. SCI., 54:1632–1639, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Polypyrrole (PPy) nanocomposites with iron nanoparticles attached to 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMP) were chemically prepared by varying the concentration of AMP using ammonium persulfate as an oxidant. The synthesized composites were characterized by using Fourier transform infrared (FTIR) spectroscopy, and their surface morphology and amended crystallinity were determined by using the transmission electron microscopy (TEM) and X‐ray diffraction (XRD), respectively. The electrical and magnetic properties of PPy–Fe–AMP composites were investigated at room temperature. The increase of AMP has brought out a significant increase of DC conductivity and magnetic saturation moment of the composites, which might have been caused by the increased mobility of charge carriers due to the hydrophilic AMP components. POLYM. COMPOS., 35:364–371, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
Graft copolymer nanocomposites based on cashew gum and poly(acrylamide) with different concentrations of nano‐iron‐oxide particles (Fe3O4) have been prepared by an in situ polymerization method. The characterization of graft copolymer composite was carried out by FTIR, UV, XRD, SEM, DSC, and TGA, electrical conductivity, and magnetic property [vibrational sample magnetometer (VSM)] measurements. The shift in the spectrum of UV and FTIR peaks shows the intermolecular interaction between metal oxide nanoparticles and the graft copolymer system. The spherically shaped particles observed from the SEM images clearly indicating the uniform dispersion of nanoparticles within the graft copolymer chain. The XRD studies revealed that the amorphous nature of the graft copolymer decreases by the addition of Fe3O4 nanoparticles. The glass transition temperature studied from DSC increases with increase in concentration of metal oxide nanoparticles. Thermal stability of composite was higher than the pure graft copolymer and thermal stability increases with increase in content of nanoparticles. Electrical properties such as AC conductivity and dielectric properties of the composites increased with increase in concentration of metal oxide nanoparticles. The magnetic property of graft copolymer nanocomposites shows ferromagnetic and supermagnetism and the saturation of magnetism linearly increased with increasing the Fe3O4 content in the polymer composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43496.  相似文献   

18.
Summary: We have prepared waterborne polyurethane (WBPU) thin films containing gold nanoparticles by casting WBPU/Au solutions. The effect of the Au nanoparticle contents on the microstructure and properties of the composite films was investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), field emission scanning electron microscopy (FESEM), transmittance electron microscopy (TEM), FTIR spectroscopy (FTIR) and dynamic mechanical analysis (DMA). The Au nanoparticles initially in the WBPU solution were well dispersed in the WBPU films cast and dried at 60 °C. The thermostability and mechanical properties of the polymer increased with Au contents up to 4.35 × 10?2 wt.‐%, which was believed to be a result of induced crystallization in the presence of Au nanoparticles. The Au/WBPU nanocomposite containing with 6.5 × 10?2 wt.‐% of Au resulted in the aggregation of Au particles, which leads to a worsening of the thermal and mechanical properties.

TEM micrograph of nanocomposites filled with 4.35 × 10?2 wt.‐% of Au nanoparticles.  相似文献   


19.
Nanocomposite thin films (NCTF) of low‐dimensional ZnSe and copper doped ZnSe integrated poly(vinylidene fluoride) (PVDF) polymer were developed via simple solution casting method. Herein, ZnSe and Cu:ZnSe nanoparticles were synthesized through the chemical reduction technique. The obtained low‐dimensional nanoparticles and NCTFs were characterized by XRD, SEM/EDS, TEM, and FTIR analysis. Room temperature dielectric and ferroelectric characteristics of PVDF/ZnSe flexible NCTF exhibited superior dielectric and ferroelectric behavior with a high coercive field of 15.6 V. Whereas, the dielectric and ferroelectric characteristics were greatly diminished in the PVDF/Cu:ZnSe flexible NCTF was due to the conducting behavior of copper ions at the interface of the polymer network. These results indicated that the PVDF/ZnSe flexible NCTF will be a potential candidate for advanced electrical applications and device fabrication. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44983.  相似文献   

20.
In this paper, ultrasonic induced encapsulating emulsion polymerization was first used to prepare the novel polymer/inorganic nanoparticles composites. The behaviors of several inorganic nanoparticles (SiO2, Al2O3, TiO2) under ultrasonic irradiation, such as dispersion, crushing, and activation, were studied. The dispersion stability, morphology, and structure of the ultrasonic irradiated nanoparticles were characterized by means of transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and spectrophotometry, respectively. The results show that the inorganic nanoparticles in the aqueous solution can redisperse more effectively by ultrasonic irradiation than by conventional stirring. This is the basis for preparation of polymer/inorganic nanoparticles composites. By this technique, the long‐term stable latex, which mainly consists of polymer/inorganic nanoparticles composite latex particles, were successfully prepared. TEM, FTIR, thermogravimetric analysis, X‐ray photoelectron spectroscopy, spectrophotometry, and element analysis confirmed that well‐dispersed nanoparticles were encapsulated by the formed polymer, and the thickness of encapsulating polymer layer was in the range of 5–65 nm. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1478–1488, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号