首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyimide composites reinforced with short‐cut fibers such as carbon, glass, and quartz fibers were fabricated by the polymerization of monomer reactants process. The mechanical properties of the composites with different fiber contents were evaluated. The friction and wear properties of the polyimide and its composites were investigated under dry‐sliding and water‐lubricated conditions. The results indicated that the short‐carbon‐fiber‐reinforced polyimide composites had better tensile and flexural strengths and improved tribological properties in comparison with glass‐fiber‐ and quartz‐fiber‐reinforced polyimide composites. The incorporation of short carbon fibers into the polyimide contributed to decreases in the friction coefficient and wear rate under both dry and water‐lubricated conditions and especially under water lubrication because of the boundary lubrication effect of water. The polyimide and its composites were characterized by plastic deformation, microcracking, and spalling under both dry and water‐lubricated conditions, which were significantly abated under the water‐lubricated condition. The glass and quartz fibers were easily abraded and broken; the broken fibers transferred to the mating metal surface and increased the surface roughness of mating stainless steel, which led to the wear rate increasing for the glass‐fiber‐ and quartz‐fiber‐reinforced polyimide composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

2.
The dry three‐body abrasive wear behavior of bi‐directional glass fabric reinforced epoxy composites with and without cenosphere filler have been studied using dry sand/rubber wheel abrasion tester. The angular silica sand particle sizes in the range 200–250 μm were used as dry and loose abrasives. The wear experiments have been conducted at two different loads viz., 22 and 32 N and different abrading distances viz. 270, 540, 810, and 1,080 m. The wear volume increases with an increase in load/abrading distance for all composites. From the experimental wear data it was observed that the abrasive wear of the composites dependent on the applied load and abrading distance. Further, the cenospheres filler inclusion in glass fiber reinforced epoxy (G‐E) composite showed poor abrasive wear performance. Scanning electron microscopy was used to study the morphology of the worn surface features of composites and to understand the mechanisms involved in the wear analysis. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
The article presents the results of experimental investigation on mechanical and dry sliding wear behavior of unsaturated polyester resin (USP), reinforced with naturally woven coconut sheath and glass fibers. The mechanical properties of coconut sheath (N) and glass fiber (G) reinforced polyester composites were studied, and the tribological behaviors were tested on pin‐on‐disc sliding wear tester. Mass loss was determined as a function of sliding distance for a sliding velocity of 3.5 m/s and an applied normal load of 40 N. The experimental result revealed that the mechanical properties and wear resistance of the composites depend on the wt% reinforcement of coconut sheath/glass fiber and sliding distance. The hybrid reinforcement (GGN) greatly increased the mechanical properties of USP. At lower sliding distance, the N‐reinforced USP had lower wear loss, whereas at higher sliding distance, the hybrid fiber‐reinforced (GGN) USP composite had lower wear loss. Furthermore, the work showed that the higher sliding distance bring about changes in the worn surface features such as interface separation, inclined fracture of fibers, loss of matrix, and the appearance of debris with the two different fibers. The worn surfaces were also examined by scanning electron microscopy. The study showed differing trends with load for the two types of reinforcements. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
In present investigation, the three‐body abrasive wear behavior of short jute fiber reinforced epoxy composites was studied. The effect of various parameters such as fiber loading, sliding velocity, normal load, and abrasive size on the abrasive wear rate of composite has been analyzed. Abrasive wear study has been carried out using a dry sand/rubber wheel abrasion tester. The abrasive wear and friction characteristics of these composites are analyzed successfully using Taguchi orthogonal array and analysis of variance. The experimental study reveals that sliding velocity, fiber loading, and abrasive size have greater influence on the specific wear rate of the composites. The results show that the specific wear rate of the composites decreases with the increase in sliding velocity whereas, with the increase in normal load the specific wear rate increases. The study also revealed that the coefficient of friction of the composites increases up to a certain value than decreases with the increase in normal load as well as sliding velocity. The worn surfaces of the abraded specimens were examined using SEM to understand the mechanism involved in material removal. POLYM. COMPOS., 270–278, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
This investigation focuses on the effects of cenosphere fillers on tribological properties of carbon fiber reinforced PEEK composites. Dry sliding wear behavior of 15 wt % short carbon fiber (SCF) reinforced PEEK composites filled with 5, 10, 15, and 20 wt % cenosphere was reported in this study, pure PEEK and 15 wt % SCF reinforced PEEK composites were also prepared for comparative analysis. Friction and wear experiments were conducted on a ring-on-block apparatus under different loads (100–400 N). The experimental results showed that all the composites exhibited lower coefficient of friction and better wear resistance than the matrix resin under different load conditions. It is noted that 10 wt % of the cenosphere particles filled SCF reinforced PEEK composites show superior tribological properties when compared to the other composites in this study. The morphologies of the worn surface and the fracture surface were analyzed by scanning electron microscopy and the transfer film was observed by optical microscope to understand the dominant wear mechanisms. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47245.  相似文献   

6.
In this study, friction and wear of polyimides reinforced by carbon, glass, aramid, and nano‐alumina fibers were studied and comparatively evaluated against Si3N4 on a ball‐on‐disk test rig under dry rotating and reciprocating sliding, and coefficient of friction and wear rate were considered as responses. The worn surfaces of the composites were examined by scanning electron microscopy to reveal wear mechanisms of the materials' damage. Wear mechanisms are found to be dependent on the test conditions and mechanical properties of the composites itself. It was proven that different reinforcements had different effects on the friction and wear behavior of the polyimide composites to a great extent. The testing condition also had an important role on the tribological properties of the same materials. The best performance was shown by glass fiber‐reinforced polyimide composites owing to their excellent strength and hardness which can share the applied load on the sliding surface. POLYM. COMPOS., 37:2541–2548, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Fiber/filler reinforced polymer composites are known to possess high strength and attractive wear resistance in dry sliding conditions. How these composites perform in abrasive wear situations needs a proper understanding. Hence, in this research article the mechanical and three‐body abrasive wear behaviour of E‐glass fabric reinforced epoxy (G‐E) and silicon carbide filled E‐glass fabric reinforced epoxy (SiC‐G‐E) composites are investigated. The mechanical properties were evaluated using Universal testing machine. Three‐body abrasive wear tests are conducted using rubber wheel abrasion tester wherein two different loads and four varying abrading distances are employed. The results showed that the wear volume loss is increased with increase in abrading distance and the specific wear rate decreased with increase in abrading distance/load. However, the presence of SiC particulate fillers in the G‐E composites showed a promising trend. The worn surface features, when examined through scanning electron microscopy, show higher levels of broken glass fiber in G‐E system compared to SiC‐ filled G‐E composites. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
In this work, the response of different filler loading of zinc oxide (ZnO) reinforced ultra‐high‐molecular‐weight polyethylene (UHMWPE) on mechanical, abrasive wear, and antibacterial properties were studied. Two variants of untreated ZnO‐reinforced UHMWPE (U‐ZPE) and treated ZnO‐reinforced UHMWPE (T‐ZPE) with aminoproplytriethoxysilane (APTES) were used to compare the improvement of the mechanical, abrasive wear, and antibacterial properties. The abrasive wear and friction behaviors were monitored using a pin‐on‐disc (POD) test rig with different applied loads and sliding speeds against 400‐grit size of silicon carbide (SiC) abrasive paper under dry sliding conditions. The antibacterial assessments of the composites were tested against two common human body bacteria, that is, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Results have shown that T‐ZPE possess higher ultimate tensile strength and elongation at break values as compared to U‐ZPE. Furthermore, the T‐ZPE have higher wear resistance compared to U‐ZPE and pure UHMWPE. The average coefficient of friction (COF) of UHMWPE was not significantly affected by the addition of both untreated and treated ZnO filler. The wear mechanisms were studied under scanning electron microscopy (SEM). Both U‐ZPE and T‐ZPE composites showed active inhibition against E. coli and S. aureus bacteria. POLYM. COMPOS., 34:1020–1032, 2013. © 2013 Society of Plastics Engineers  相似文献   

9.
An experimental study was carried out to investigate the dry sliding friction and wear characteristics of woven glass epoxy composites filled with Al particulates sliding against steel using a pin-on-disc tribometer. The glass fiber weight fraction was kept constant at 60 wt% and Al wt% varied as 0, 5, 10, and 15%. The composite was fabricated by a hand lay-up technique followed by light compression molding. Friction and wear behavior under dry sliding condition are presented as a function of sliding speed varying between 1–5 m/s and normal load ranging between 10–40 N. Friction characteristics of composites depend strongly on a combination of filler content, sliding speed and load. Wear loss increases with both sliding speed and load. Incorporation of a smaller amount of Al filler reduces wear loss compared to un-filled glass epoxy composites. An attempt has also been made to observe the distribution of fiber and Al particles in the composite, and to correlate the wear behavior using Scanning Electron Microscopy (SEM) observations.  相似文献   

10.
Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of the tribological properties of the composites with various compositions and the examinations of the worn steel surfaces and composites structures by means of scanning electron microscopy and transmission electron microscopy. It was found that the incorporation of the PPHZ led to a significant decrease in the wear rate of the composites. The composites with the volume fraction of the PPHZ particulates within 45% ~ 75% showed the best wear resistance. The friction coefficient of the UHMWPE/PPHZ composites decreased with increasing load and sliding velocity, while the wear rates increased with increasing load. This was attributed to the enhanced softening and plastic deformation of the composites at elevated load or sliding velocity. The UHMWPE/PPHZ composites of different compositions had differences in the microstructures and the transfer film characteristics on the counterpart steel surface as well. This accounted for their different friction and wear behaviors. The transfer film of the UHMWPE/PPHZ composites appeared to be thinner and more coherent, which was largely responsible for their better wear resistance of t composite than the UHMWPE matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2336–2343, 2005  相似文献   

11.
Short basalt fiber (BF) reinforced polyimide (PI) composites were fabricated by means of compression‐molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring‐on‐block test rig under dry sliding conditions. The morphologies of the worn surfaces and the transfer films that formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The influence of the short BF content, load, and sliding speed on the tribological behavior of the PI composites was examined. Experimental results revealed that the low incorporation of BFs could improve the tribological behavior of the PI composites remarkably. The friction coefficient and wear rate decreased with increases in the sliding speed and load, respectively. The transfer film that formed on the counterpart surface during the friction process made contributions to reducing the friction coefficient and wear rate of the BF‐reinforced PI composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Three‐dimensional (3D) braided carbon fiber reinforced polyetheretherketone (denoted as CF3D/PEEK) composites with various fiber volume fractions were prepared via hybrid woven plus vacuum heat‐pressing technology and their tribological behaviors against steel counterpart with different normal loads at dry sliding were investigated. Contrast tribological tests with different lubricants (deionized water and sea water) and counterparts made from different materials (epoxy resin, PEEK) were also conducted. The results showed that the incorporation of 3D braided carbon fiber can greatly improve the tribological properties of PEEK over a certain range of carbon fiber volume fraction (Vf) and an optimum fiber loading of ∼54% exists. The friction coefficient of the CF3D/PEEK composites decreased from 0.195 to 0.173, while the specific wear rate increased from 1.48 × 10−7 to 1.78 × 10−7 mm3 Nm−1 with the normal load increasing from 50 to 150 N. Abrasive mechanism was dominated when the composites sliding with GCr15 steel counterpart under dry and aqueous lubrication conditions. Deionized water and sea water lubricants both significantly reduced the wear of the CF3D/PEEK composites. When sliding with neat PEEK counterpart, the CF3D/PEEK composites possess lower friction coefficient than those against epoxy resin and GCr15 steel counterparts. In general, CF3D/PEEK composites possess excellent tribological properties and comprehensive mechanical performance, which makes it become a potential candidate for special heat‐resisting tribological components. POLYM. COMPOS., 36:2174–2183, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
To improve the tribological properties of basalt‐fabric‐reinforced phenolic composites, solid lubricants of MoS2 and graphite were incorporated, and the tribological properties of the resulting basalt‐fabric composites were investigated on a model ring‐on‐block test rig under dry sliding conditions. The effects of the filler content, load, and sliding time on the tribological behavior of the basalt‐fabric composites were systematically examined. The morphologies of the worn surfaces and transfer films formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The experimental results reveal that the incorporation of MoS2 significantly decreased the friction coefficient, whereas the inclusion of graphite improved the wear resistance remarkably. The results also indicate that the filled basalt‐fabric composites seemed to be more suitable for friction materials serving under higher loads. The transfer films formed on the counterpart surfaces during the friction process made contributions to the reduction of the friction coefficient and wear rate of the basalt‐fabric composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Taguchi design techniques have been applied to investigate the significant influence of various operating and design parameters, such as contact load, rotational sliding speed, and carbon nanotubes (CNTs) concentration on the tribological properties of ultra‐high molecular weight polyethylene nanocomposites. Analysis of variance was conducted to discuss the significance of each of the parameters. Simple regression models were developed for wear rate as well as for the coefficient of friction (COF) of the nanocomposite. Applied normal force was found to be the dominant factor controlling the wear rate and friction coefficient. The significance of CNTs concentration on both COF and wear rate closely follow that of applied load. Rotational sliding speed has the least influence on the tribological properties of the nanocomposite. The developed model for predicting wear rate and the COF was found to give very good predictions against the experimental data. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44018.  相似文献   

15.
Polyimide composites should function in sliding contacts under high temperatures, but the interference of carbon fibers with sliding mechanisms is difficult to predict: they often increase the coefficients of friction and act abrasively but show lubricating properties under other conditions. The friction and wear behavior of thermoplastic polyimides reinforced with short carbon fibers and filled with solid internal lubricant (polytetrafluoroethylene) or silicon oil was investigated in this study with a reciprocating cylinder‐on‐plate tester under 50 N at 0.3 m/s with steel counterfaces that were heated at 23–260°C. We concluded that polytetrafluoroethylene additives effectively reduced the coefficients of friction over the entire temperature range, especially under thermally controlled sliding conditions at 120°C, whereas the internal silicon oil increased the coefficients of friction. The wear rates of the fiber‐reinforced polyimide significantly decreased with respect to those of the thermoplastic polyimide, whereas additional fillers slightly increased the wear rates. We further analyzed the role of internal additives by considering the deformation and maximum polymer surface temperature during sliding. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Tribological behavior of short fiber-reinforced thermoplastic composites was investigated experimentally and theoretically. Short carbon fiber and glass fiber reinforced poly(amide-imide) composites were tested. Titanium oxide powder-filled composite was also tested for comparison with the fiber composites. Block-on-ring type wear testing was performed for 24 h at three different sliding conditions. Frictional force was measured and stored by a data acquisition system and wear was measured as weight loss after the test. Wear tracks on the specimen and the counterface were examined with an optical microscope to observe fiber damage and formation of wear film. The equivalent stress distribution around each fiber at the sliding surface was calculated by employing a finite element program. The lowest friction and wear was obtained for the carbon fiber composite, the highest friction for the glass fiber composite, and the highest wear for TiO2-filled one. It was observed that the glass fibers are damaged and removed from the surface more easily than the carbon fibers, and the finite element analysis also suggests easier debonding of glass fibers.  相似文献   

17.
Two kinds of polyurethane (PU) composites with different hard segment content modified by a high molecular weight hydroxyl‐terminated polydimethylsiloxane (HTPDMS) were prepared. The effect of the hard segment content on the mechanical and tribological properties of the PU composites was studied. Tensile strength of the PU composites increased with the increasing of the hard segment content. The friction and wear experiments were tested on a MRH‐3 model ring‐on‐block test rig at different sliding speeds and loads under different lubricated conditions. Experimental results revealed that the coefficient of friction (COF) and the wear rate value of the PU composites decreased with increasing hard segment content and the COF of the PU composites under dry friction was higher than that under water and sea water lubrication. Scanning electron microscopy (SEM) investigations showed that the worn surfaces of the PU under water and sea water lubrication were smoother than that under dry friction. Besides, the wear rate value of the PU composites under water and sea water lubrication was smaller than that under dry friction. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
Sisal fiber‐reinforced epoxy composites having three different fiber orientations, namely LL, LT, TT mentioned in the text were prepared and tested for their high stress abrasive wear behavior. Effect of fiber orientation, sliding distance, and load on abrasive wear of sisal–epoxy composites have been determined. Wear data of composites have been compared with the pure epoxy. Incorporation of fibers decreases the wear rate of epoxy resin, which varies with the fiber orientation. Wear rate in case of TT composite is found minimum as compared to other two composites. Wear rate follows the following trend, WTT < WLT < WLL. Owing to minimum exposed area of fiber to the sliding asperities, lowest wear rate occurs in the case of TT composite. Increase of load and sliding distance increases the wear volume in all the composites, because of the progressive loss of material. Wear mechanism has been discussed by using SEM micrographs of the worn surfaces. POLYM. COMPOS., 28:437–441, 2007. © 2007 Society of Plastics Engineers.  相似文献   

19.
The tribological behaviors of novel porous Polyetheretherketone (PEEK) composites under 1‐hexyl‐3‐methylimidazolium tetrafluoroborate ionic liquid lubricated condition were investigated. The effect of sliding velocity and applied load on the sweating tribological properties and the stability of lubricating oil film was also studied. Results indicated that when the sliding velocity was 0.69 m/s and the applied load was 250 N, the friction coefficient and wear rate of the ionic liquid lubricated porous sweating activated carbon fiber/polytetrafluoroethene/PEEK composites showed the minimum values, were 0.0197 and 4.145 × 10?15 m3/Nm, respectively. The friction coefficients fluctuated in a narrow range of 0.0162–0.0215. It was found that the porous sweating PEEK composites under ionic liquid lubricated condition showed good low‐friction and antiwear performance, especially under the condition of high sliding velocity and applied load. The formed transfer film due to the tribo‐chemical reaction as well as boundary lubricating film is effective in improving the carrying capacity and antiwear properties of the porous sweating PEEK composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40989.  相似文献   

20.
牛军锋 《塑料科技》2012,40(10):55-57
分别以玻璃纤维(GF)与碳纤维(CF)作为增强体制备了聚苯硫醚(PPS)纤维增强复合材料。研究了GF/PPS和CF/PPS复合材料的摩擦磨损性能,以及不同体积分数的纤维增强体、不同载荷与滑动速度对复合材料的摩擦磨损性能的影响。结果表明:GF与CF的引入有效地提高了复合材料的摩擦磨损性能;随纤维体积分数的增加复合材料的摩擦系数逐渐增加,随载荷的增加复合材料的摩擦系数逐渐降低,但磨损率增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号