首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly open porous crosslinked styrene/ acrylonitrile (SAN) polymerized high internal phase emulsion (PolyHIPE) foams containing various amounts of acrylonitrile (AN) were prepared by the polymerization of the continuous organic phase of high internal phase emulsions with an 85 vol % aqueous internal phase. The mean diameter of voids varied in the range 12.4–19.8 μm. The void diameter increased up to 10% AN, but beyond this limit, the diameter decreased. To improve the mechanical properties of the copolymer foams, the organic phase of the emulsion containing 20% AN was reinforced with organomontmorillonites with different surface modifiers. The effects of the organoclay on the equilibrium torque value of the emulsifying systems, as an approximate characteristic of the emulsion viscosity, and on the morphology and mechanical properties of the resulting foam were investigated. Scanning electron micrographs exhibited an open‐cell polyHIPE structure for all of the SAN/organoclay polyHIPE foams. The incorporation of organoclays within the emulsion copolymer foam significantly decreased the mean size of voids and intercellular pores compared with those of the copolymer foam without reinforcement. In fact, the presence of organoclay may have acted as a cosurfactant to improve the performance of the nonionic surfactant in the concentrated emulsions. The X‐ray diffraction patterns and transmission electron micrographs showed an intercalated nanocomposite structure for the organoclay‐reinforced copolymer foams. On the other hand, the addition of a more hydrophilic organoclay, that is, 3 wt % Cloisite30B, to the concentrated emulsion decreased the Young's modulus and significantly improved the crush strength of the emulsion copolymer foam. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
In this study, our goal is to obtain lower density of ethylene‐vinyl acetate copolymer (EVA)/ethylene‐1‐butene copolymer (EtBC) foams without sacrificing mechanical properties. For this purpose EVA/EtBC/organoclay (Cloisite 15A, Closite 30B) nanocomposite foams were prepared. To investigate the effect of compatibilizer on the dispersion state of organoclay in cellular foam structure and mechanical properties of the EVA/EtBC/organoclay foams composites were prepared with and without maleic anhydride grafted EtBC (EtBC‐g‐MAH). The dispersion of organoclay in EVA/EtBC/organocaly foams was investigated by X‐ray diffraction and transmission electron microscopy. The EVA/EtBC nanocomposite foamswith the compatibilzer, especially EVA/EtBC/Cloisite 15A/EtBC‐g‐MAH foams displayed more uniform dispersion of organoclay than EVA/EtBC nanocomposite foams without the compatibilzer. As a result, EVA/EtBC/Cloisite 15A/EtBC‐g‐MAH foams have the smallest average cell size and highest 100% tensile modulus followed by EVA/EtBC/Cloisite 30B/EtBC‐g‐MAH foams. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3879–3885, 2007  相似文献   

3.
Nanocomposite foams were fabricated from 60/40 wt% ethylene vinyl acetate (EVA)/natural rubber (NR) blends by using azodicarbonamide as a blowing agent. Two different nanofillers (sodium montmorillonite and organoclay) were employed to study their effects on foam properties. The results were also compared with conventional (china clay)‐filled foams. Transmission electron microscopy, X‐ray diffraction, scanning electron microscopy, and three‐dimensional Microfocus X‐ray computed tomography scanning analysis were performed to characterize the EVA/NR blend morphology and foam structures. The results revealed that the nanofiller acted as a blend compatibilizer. Sodium montmorillonite was more effective in compatibilization, generating better phase‐separated EVA/NR blend morphology and improving foam structure. Higher filler loading increased the specific tensile strength of rubber foams. The rubber nanocomposite foam showed superior specific tensile strength to the conventional rubber composite foam. The elastic recovery and compressive strength of the nanocomposite foams decreased with increasing filler content, whereas the opposite trend was observed for the conventional composite foams with china clay. The thermal conductivity measurement indicated that the nanofiller had better beneficial effect on thermal insulation over china clay filler. From the present study, the nanofillers played an important role in obtaining better blend morphology as compatibilizer, rather than the nucleating agent and the nanofiller content of 5 phr (parts by weight per hundred parts of rubber) was recommended for the production of EVA/NR nanocomposite foams. J. VINYL ADDIT. TECHNOL., 21:134–146, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
Nanocomposites made of poly(lactic acid), poly(butylene succinate), and organically modified montmorillonite were prepared by melt blending in a twin screw extruder. The influence of the organoclay content on nanocomposite properties was investigated. The nanocomposite structure has been characterized by various techniques at different scales. X‐ray diffraction showed an intercalated structure whereas rheological investigations in small amplitude oscillatory shear indicated a partial exfoliation. It was also shown that organoclay was evenly dispersed in the matrix even though some large aggregates were also observed. The mechanical properties of nanocomposites were measured in uniaxial tensile test. Oxygen and water vapor permeability was also characterized. It was shown that dispersed organoclay and aggregates have a direct impact on mechanical properties and permeability. An increase of Young's modulus by 41% and a decrease of permeability by 40% could be obtained with 7 wt % organoclay. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40364.  相似文献   

5.
A novel method for preparing rigid polyurethane (PU) foam/organoclay nanocomposites was developed through the direct incorporation of an organoclay into PU foam matrices without the addition of any physical or chemical blowing agent. The resultant foams with an appropriate content of the organoclay had a finer cell structure than the pristine PU foams because the organoclay not only acted as a nucleating agent as expected but also acted as a blowing agent of the PU foams; this could be attributed to the bound water between the interlayers of the organoclay. In addition, the incorporation of the organoclay up to 4 phr resulted in improvements in the tensile and compressive strengths, with the maximum values appearing at 2 phr (110 and 152%, respectively). The significant improvement in the mechanical properties could be attributed to the finer cell structure and the increased internal strength of the materials due to the higher degree of hydrogen bonding. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
This article investigates the effects of liquid‐type silane additives and organoclay as a solid‐type additive on the morphological, mechanical and thermal insulating properties of polyisocyanurate‐polyurethane (PIR‐PUR) foams. The organoclay likely acted as nucleating agents during the formation of PIR‐PUR foams. When the liquid silane additives and organoclay were added, the cell size and thermal conductivity of the PIR‐PUR foams appeared to be decreased. However, organoclay did not contribute to reduce the cell size distribution of the foam. PIR‐PUR foams synthesized with tetramethylsilane as a liquid‐type additive showed a smaller average cell size and lower thermal conductivity than that of PIR‐PUR foams synthesized with the other silane additives or with organoclay as a solid‐type additive. For the PIR‐PUR foam with organoclay/TEMS (1.5/1.5 php) mixture, cell size and thermal conductivity of the foam showed similar to the foam with TEMS. These results suggest that smaller cell size appears to be one of the major factors in the improvement of thermal insulation properties of the PIR‐PUR foams. Silane additives did not seem to have a strong effect on the flammability of the PIR‐PUR foams. However, heat resistance was more dominant for the foam with the organoclay at the higher temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Fibers prepared by melt spinning process from the PP (polypropylene)/organoclay nanocomposite were characterized in details with the aid of SEM, FTIR, XRD, DSC, and mechanical measurements. The results suggested that the lower content of organoclay (0.1%) added to the PP matrix increased the crystallinity and mechanical property (tensile strength) of the PP/organoclay nanocomposite fiber. With increasing the content of organoclay (≥ 0.3%), the crystallinity and the tensile strength both a little decreased, and the fiber containing organoclay exhibited multi‐peaks at the same draw ratio during the heating process. Furthermore, the degree of orientation of the fiber increased a little with lower content of organoclay (0.1%) introduction to PP during the infrared dichroism measurement. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
To obtain excellent mechanical properties of polymer nanocomposite foams without sacrificing the lower density through popular and friendly means. Organically modified palygorskite (OPal) was prepared with γ-aminopropyltriethoxysilane on the surface of rod-shaped Pal particles, and nanocomposite foams based on ethylene-vinyl acetate (EVA) copolymer was prepared by melt-blending EVA with OPal. Fourier transform infrared spectroscopy (FTIR) was used to investigate the interaction between OPal and EVA matrix, and the OPal/EVA nanocomposites were also characterized by X-ray photoelectron spectra (XPS), X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC). The dispersivity of OPal in the EVA matrix and the morphology of the foams were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and the OPal/EVA nanocomposite foams were also characterized by thermogravimetric analysis (TGA). The effect of OPal content in the foam samples on the cellular structure and mechanical properties was investigated. Our studies indicate that the OPal nanofibers could be used as a heterogeneous nucleation agent to reduce the average cell diameter. The uniformity of cell structure of the foams was improved, and the physical properties of OPal/EVA nanocomposite foams were enhanced by the addition of OPal. The density of OPal/EVA nanocomposite foams was decreased to 0.133 g/cm3. Also, the best tear strength, peel strength and compression set values of nanocomposite foams were 4.65, 2.65 N/mm and 25.5 %, which were improved by 36.0, 54.3 and 12.0 %, respectively, compared with those of the initial foam.  相似文献   

9.
Sodium‐montmorillonite nanoclay was modified with octadecylamine and compounded with natural rubber (NR) by dry mixing method. The effects of organoclay loading level on mechanical properties, thermal–mechanical behavior, and heat build‐up of NR/organoclay nanocomposites were investigated. Temperature scanning stress relaxation technique was used to characterize the thermal–mechanical behavior of the composites. The morphological properties were assessed by X‐ray diffraction and transmission electron microscopy. Loading levels of organoclay below 5 phr gave improved mechanical properties and heat build‐up, along with exfoliated clay structure in the nanocomposites. On the other hand, with loading levels above 7 phr the organoclay tended to agglomerate, and X‐ray diffraction revealed an intercalated structure. In these cases, the excess residual organoclay caused significantly increased stress relaxation and heat build‐up. Unmodified sodium‐montmorillonite as filler did not significantly affect the mechanical and heat build‐up properties of NR vulcanizates. POLYM. COMPOS., 37:1735–1743, 2016. © 2014 Society of Plastics Engineers  相似文献   

10.
A series of polyimide/silica (PI/SiO2) hybrid foams were prepared by the sol–gel process. Aminopropyltriethoxysilane was used as the coupling agent to enhance the compatibility between PI matrix and SiO2. Fourier transform infrared spectroscopy and scanning electron microscopy were used to analyze the chemical structure and cellular structure of PI/SiO2 hybrid foams. The results indicated that the three‐dimensional network of Si O Si was formed in the hybrid foams, and the hybrid foam presented the uniform cellular structure when the SiO2 content was less than 6 wt%. The thermal stability, dynamic mechanical property, and dielectric property of PI/SiO2 hybrid foams were investigated by dynamic mechanical analysis, thermogravimetric analysis, and vector network analyzer, respectively. The introduction of SiO2 improved the thermal stability and increased the storage modulus and glass‐transition temperature. The hybrid foams showed higher dielectric constants compared with the neat PI foam. The erosion resistance to atomic oxygen (AO) of PI/SiO2 hybrid foams was also evaluated in a ground‐based AO simulator. The surface morphology and chemical structure of PI/SiO2 hybrid foams before and after AO exposure were investigated by scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy. The results revealed that the inorganic SiO2 protective layers were formed on the surface of PI/SiO2 hybrid foams after AO exposure, which could effectively improve the AO erosion resistance of PI/SiO2 hybrid foams. POLYM. COMPOS., 36:713–721, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/multi‐walled carbon nanotube (MWCNT)/organoclay foams with improved mechanical properties without increase of their density, compared with EVA/MWCNT foams. MWCNT content was fixed at 5 phr in this study. To achieve the objective, EVA was melt‐mixed with MWCNTs and organoclays in a bench kneader. And the obtained EVA/MWCNT/organoclay mixtures were mixed with chemical blowing agent and cross‐linking agent in a two roll‐mill. After being mixed in a two roll‐mill, the mixtures were put in a mold and the foams were obtained by compression‐molding. The effect of organoclay content on the mechanical properties and surface resistivity of EVA/MWCNT (5 phr)/organoclay foams was investigated. The addition of 1 phr organoclays to the EVA/MWCNT (5 phr) foams resulted in the improvement of tensile strength, 100% tensile modulus, tear strength, and compression set without increase of the density. However, further increase in content of organoclay (3 phr) leaded to a deterioration of mechanical properties. Therefore, determining the optimal content of organoclay was very important in order to achieve the main objective of this study. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
A series of the exfoliated or intercalated PU/organoclay nanocomposite thin films were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The surface mechanical properties of the PU/organoclay nanocomposite films were investigated by means of nanoindentation. The results show that the hardness, elastic modulus and scratch resistant of the nanocomposites dramatically improved with the incorporation of organoclay. This improvement was dependent on the clay content as well as the formation structure of clay in the PU matrix. At 3% clay content, the hardness and elastic modulus of intercalated nanocomposites increased by approximately 16% and 44%, respectively, compare to pure PU. For exfoliated nanocomposite, the improvements in these properties were about 3.5 and 1.6 times higher than the intercalated ones. The exfoliated PU nanocomposites also had greater hardness and showed better scratch resistance compared to the intercalated ones.  相似文献   

13.
BACKGROUND: Ternary nanocomposites containing an organomodified layered silicate polyimide additive within a polyamide matrix have been investigated to gain greater insight into structure–property relationships and potential high‐temperature automotive applications. RESULTS: Polyamide nanocomposite blends, containing 3 wt% of organoclay, were prepared and compared with organoclay‐reinforced polyamide and neat polyamide. Nanoclay addition significantly increased heat distortion temperature, as well as both the tensile and flexural moduli and strength. The addition of polyimide demonstrated further increases in heat distortion temperature, glass transition temperature and the flexural and tensile moduli by about 17, 21 and 40%, respectively. The tensile and flexural strengths were either unaffected or decreased modestly, although the strain‐to‐failure decreased substantially. Morphological studies using transmission electron microscopy (TEM) and X‐ray diffraction showed that the nanoclay was dispersed within the ternary blends forming highly intercalated nanocomposites, regardless of the presence and level of polyimide. However, TEM revealed clay agglomeration at the polyamide–polyimide interface which degraded the mechanical properties. CONCLUSIONS: A range of improvements in mechanical properties have been achieved through the addition of a polyimide additive to a polyamide nanocomposite. The decrease in ductility, arising from the poor polyamide–polyimide interface and nanoclay clustering, clearly requires improving for this deficiency to be overcome. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
An attempt was made to synthesize polyurethane (PU)/organoclay nanocomposite foams with high thermal insulation properties. The organoclay was modified by polymeric 4,4′‐diphenylmethane diisocyanate (PMDI) with a silane coupling agent. The structure of the organoclay‐modified PMDI with the silane coupling agent was determined by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Transmission electron micrographs and wide‐angle X‐ray diffraction patterns showed that the interlayer distance increased for the PU/organoclay nanocomposites with the addition of the silane coupling agent. It was expected that the distance between the organoclay layers would increase and that the organoclay would be dispersed on a nanoscale in the PU matrix because of the organic/inorganic hybrid bond formation between the organoclay and silane coupling agent. Compressive and flexural strengths of the PU/silane coupling agent/organoclay nanocomposite foams were similar to those of the PU/organoclay nanocomposite foams. However, the thermal conductivity appreciably decreased from 0.0250 to 0.0230 W/m h °C in the PU/silane coupling agent/organoclay nanocomposite foams. Scanning electron micrographs showed that the cell size of the PU/silane coupling agent/clay nanocomposite foams also decreased. On the basis of these results, it is suggested that the smaller cell size and lower thermal conductivity of the PU/silane coupling agent/organoclay nanocomposite foams were mainly due to enhanced exfoliation of the organoclay layers by the silane coupling reaction. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
A series of high‐temperature‐resistant polyimide/montmorillonite (PI/MMT) nanocomposite foams were prepared by solid blending method. The dispersion of MMT and effects of MMT content on the properties of the PI/MMT nanocomposite foams were investigated. Results indicated that MMT could be exfoliated effectively and dispersed uniformly in the PI matrix by the solid blending method. The introduction of MMT could considerably increase the reduced compressive strength, thermal resistance, and decrease the dielectric constant of the PI/MMT nanocomposite foams. The reduced compressive strength of nanocomposite foams showed a maximum value at the MMT content of 5 wt%, which was 197% higher than that of pure PI foams. It was worth noting that a significant increase in glass‐transition temperature (T g) could be achieved with the increase of MMT content, and the maximum T g was as high as 436°C at the MMT content of 7 wt%. This study may provide a useful method to prepare PI/MMT nanocomposite foams with improved properties for targeted high‐temperature applications. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers  相似文献   

16.
Bicyclo[2.2.2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride (BCDA)‐based polyimide–clay nanocomposites were prepared from their precursor, namely polyamic acid, by a solution‐casting method. The organoclay was prepared by treating sodium montmorillonite (Kunipia F) clay with dodecyltrimethylammonium bromide at 80 °C. Polyamic acid solutions containing various weight percentages of organoclay were prepared from 4,4′‐(4,4′‐isopropylidenediphenyl‐1,1′‐diyldioxy)‐dianiline and BCDA in N‐methyl‐2‐pyrrolidone containing dispersed particles of organoclay at 20 °C. These solutions were cast on a glass plate using a Doctor's blade and then heated subsequently to obtain nanocomposite films. The nanocomposites were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal mechanical analysis, dynamic mechanical analysis, polarizing microscopy, scanning electron microscopy, transmission electron microscopy, wide‐angle X‐ray diffraction (WAXD) and thermogravimetric analysis. The glass transition temperature of the nanocomposites was found to be higher than that of pristine polymer. The coefficient of thermal expansion of the nanocomposites decreased with increasing organoclay content. WAXD studies indicated that the extent of silicate layer separation in the nanocomposite films depended upon the organoclay content. Tensile strength and modulus of the nanocomposite containing 1% organoclay were significantly higher when compared to pristine polymer and other nanocomposites. The thermal stability of the nanocomposites was found to be higher than that of pristine polymer in air and nitrogen atmosphere. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
In this paper, aramid fiber (AF)/ethylene-propylene-diene monomer (EPDM) microcellular foams added with different content of AF are prepared by the supercritical foaming method. The effect of the AF content on the rheological behavior, mechanical properties, thermal properties and cellular structure of the AF/EPDM microcellular foams has been systematically studied. The research illustrates that compared with pure EPDM, the AF/EPDM matrix has greater viscosity and modulus, which is conducive to reduce the cell size and increase its density. And the thermal stability of EPDM foams is improved with the addition of aramid fiber. Meanwhile, when the content of AF is added to 1 wt%, the AF/EPDM microcellular foam exhibits a relatively low thermal diffusion coefficient and apparent density with the thermal conductivity to 0.06 W/mK. When the AF is added to 5 wt%, the tensile strength of the AF/EPDM microcellular foam increases to 1.95 MPa, which is improved by 47% compared with that of the pure EPDM foam. Furthermore, when the compressive strain reaches to 50%, the compressive strength of the AF/EPDM microcellular foam is 0.48 MPa, improved by 296% compared with that of the pure EPDM foam.  相似文献   

18.
Organically modified montmorrillonite clay, containing a long chain aliphatic quarternary ammonium cation, was used to prepare polyimide/organoclay hybrids. Several approaches were examined in an attempt to achieve fully exfoliated nanocomposites. These included simple mixing of the clay in a pre-made high molecular weight poly(amide acid) solution; simple mixing followed by sonication of the organoclay/poly(amide acid) solutions; and the preparation of high molecular weight poly(amide acid)s in the presence of the organoclay dispersed in N-methyl-2-pyrrolidinone (NMP). The best results were obtained using the in-situ polymerization approach. The resulting nanocomposite films (both amide acid and imide), containing 3-8% by weight of organoclay, were characterized by differential scanning calorimetry (DSC), dynamic thermogravimetric analysis (TGA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thin film tensile properties. A significant degree of dispersion was observed in the nanocomposite films of the amide acid and the imide. After thermal treatment of amide acid films to effect imidization, in both air and nitrogen, the films were visually darker than control films without clay and the level of clay dispersion appeared to have decreased. In the latter case, the separation between the layers of the clay decreased to a spacing less than that present in the original organoclay. These observations suggest that thermal degradation of the aliphatic quarternary ammonium cation occurred likely during thermal treatment to effect imidization and solvent removal. These thermal degradation effects were less pronounced when thermal treatment was performed under nitrogen. The polyimide/organoclay hybrid films exhibited higher room temperature tensile moduli and lower strength and elongation to break than the control films.  相似文献   

19.
The natural rubber/styrene butadiene rubber/organoclay (NR/SBR/organoclay) nanocomposites were successfully prepared with different types of organoclay by direct compounding. The optimal type of organoclay was selected by the mechanical properties characterization of the NR/SBR/organoclay composites. The series of NR/SBR/organoclay (the optimal organoclay) nanocomposites were prepared with various organoclay contents loading from 1.0 to 7.0 parts per hundreds of rubber (phr). The nearly completely exfoliated organoclay nanocomposites with uniform dispersion were confirmed by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The results of mechanical properties measurement showed that the tensile strength, tensile modulus, and tear strength were improved significantly when the organoclay content was less than 5.0 phr. The tensile strength and the tear strength of the nanocomposite with only 3.0 phr organoclay were improved by 92.8% and 63.4%, respectively. It showed organoclay has excellent reinforcement effect with low content. The reduction of the score and cure times of the composites indicated that the organoclay acted as accelerator in the process of vulcanization. The incorporation of a small amount of organoclay greatly improved the swelling behavior and thermal stability, which was attributed to the good barrier properties of the dispersed organoclay layers. The outstanding performance of co‐reinforcement system with organoclay in the tire formulation showed that the organoclay had a good application prospect in the tire industry, especially for the improvement of abrasion resistance and the reduction of production cost. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Novel polyamide/organoclay nanocomposites were prepared through solution intercalation technique. Reactive organoclay was prepared using Cloisite‐Na+ and protonated form of 4,4′‐diaminodiphenylmethane via ion‐exchange reaction. New photosensitive aliphatic‐aromatic polyamide containing dibenzal acetone moiety was successfully synthesized through direct polycondensation. Flammability and thermal properties of the polyamide and corresponding nanocomposites were studied. Thermogravimetric analysis results indicated improved thermal stability of the nanocomposites compared to the neat polyamide. According to the microscale combustion calorimeter results, the peak heat release rate value has been decreased from 113 to 72 W/g by introducing 2 wt% of the organoclay in the polyamide matrix. POLYM. COMPOS., 36:1502–1509, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号