首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the good biocompatibility of protein molecules and the various characteristics of hydrogel systems.  相似文献   

2.
Carbodiimide cross-linked silk fibroin (SF)/sodium alginate (SA) composite hydrogels with superior stability and tunable properties are developed by varying preparation parameters. SF/SA blend ratio modulation allows to achieve composite hydrogel gelation times of 18–65 min, and rheological analysis shows that the speed of gel formation, the hydrogel network's density, and the hydrogels’ compressive properties are closely related to the blend ratio. The G′ of different hydrogels varies substantially from 28 to 413 Pa, and the hydrogel with higher SF content has a greater stiffness. The composite hydrogels present appropriate porosity of 76.63–85.09% and pore size of 316–603 µm. Hydrogel stability improves significantly after cross-linking, and substantial swelling occurs due to the hydrophilicity of SA. The 7/3 and 6/4 SF/SA hydrogels are more resistant to degradation in PBS, and cytotoxicity testing confirmed their biocompatibility. For release studies in vitro, two model compounds are used as drug models, tetracycline hydrochloride, and bovine serum albumin (BSA). Different ratios of SF/SA have a greater influence on the release of BSA. This study provides a practical preparation method for flexible SF/SA composite hydrogels, which can help design hydrogels with specific physicochemical properties for different applications, especially drug delivery.  相似文献   

3.
This research investigated the effect of enzymatically digested low molecular weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; <1000 Da, GO2KA2; 1000–10,000 Da, GO2KA3; MW > 10,000 Da). The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD) rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax) for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC) for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax) for GO2KA1 was significantly delayed (0.9 h) compared to control (0.5 h). These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW < 1000 Da) had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management.  相似文献   

4.
The impact of different amounts of glycerin, which was used in the system of sodium alginate/poly(vinyl alcohol) (SA/PVA) hydrogel materials on the properties, such as gel fraction, swelling ability, degradation in simulated body fluids, morphological analysis, and elongation tests were presented. The study shows a significant decrease in the gel fraction from 80.5 ± 2.1% to 45.0 ± 1.2% with the increase of glycerin content. The T5 values of the tested hydrogels were varied and range from 88.7 °C to 161.5 °C. The presence of glycerin in the matrices significantly decreased the thermal resistance, which was especially visible by T10 changes (273.9 to 163.5 °C). The degradation tests indicate that most of the tested materials do not degrade throughout the incubation period and maintain a constant ion level after 7-day incubation. The swelling abilities in distilled water and phosphate buffer solution are approximately 200–300%. However, we noticed that these values decrease with the increase in glycerin content. All tested matrices are characterized by the maximum elongation rate at break in a range of 37.6–69.5%. The FT-IR analysis exhibits glycerin changes in hydrogel structures, which is associated with the cross-linking reaction. Additionally, cytotoxicity results indicate good adhesion properties and no toxicity towards normal human dermal fibroblasts.  相似文献   

5.
Alcohol additive is one of the stimulants that induces the fast gelation of silk fibroin solution. Based on our previous report, different alcohol types influence the gelation kinetic and the properties of resulting silk fibroin hydrogels. Here, the effects of alcohol concentrations on the silk fibroin gelation and cell response were reported. All fibroin hydrogels prepared with various alcohol additives showed cell biocompatibility, especially the fibroin hydrogel prepared with 10 wt % n-butanol. Results on the mechanical properties of hydrogels, n-butanol additive enhanced a higher compressive modulus up to ~ 22 times in comparison to non-alcoholic fibroin hydrogel. Fourier transform infrared analysis and peak deconvolution showed a possible formation of more β-turn linkage and random coil structure of fibroin segments in alcoholic fibroin hydrogel. So, the micro-segmental structure of fibroin hydrogel caused the higher compressive modulus, prolonged deformation of the hydrogels, and efficient cell growth on the fibroin hydrogel. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48731.  相似文献   

6.
This paper explores the structures of exogenous protein molecules that can effectively improve the mechanical properties of silkworm silk. Several transgenic vectors fused with the silkworm fibroin light chain and type 3 repeats in different multiples of the ampullate dragline silk protein 1 (MaSp1) from black widow spider with different lengths of the polyalanine motifs were constructed for this study. Transgenic silkworms were successfully obtained by piggyBac-mediated microinjection. Molecular detection showed that foreign proteins were successfully secreted and contained within the cocoon shells. According to the prediction of PONDR® VSL2 and PONDR® VL-XT, the type 3 repeats and the polyalanine motif of the MaSp1 protein were amorphous. The results of FTIR analysis showed that the content of β-sheets in the silk of transgenic silkworms engineered with transgenic vectors with additional polyalanine was significantly higher than that of wild-type silkworm silk. Additionally, silk with a higher β-sheet content had better fracture strength and Young’s modulus. The mechanical properties of silk with longer chains of exogenous proteins were improved. In general, our results provide theoretical guidance and technical support for the large-scale production of excellent bionic silk.  相似文献   

7.
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE) and tea pomace extracts (TPE) by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD) rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL) and TPE (0.13 ± 0.01 mg/mL) of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt) of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD rats. The TPE of all three teas had significantly higher phenolic content than those of the TWE groups, which correlated strongly with the DPPH radical scavenging activity. This is the first report of tea pomace extract significantly inhibits intestinal α-glucosidase, resulting in delayed glucose absorption and thereby suppressed postprandial hyperglycemia. Our data suggest that tea pomace-derived bioactives may have great potential for further development as nutraceutical products and the reuse of otherwise biowaste as valuable bioresources for the industry.  相似文献   

8.
The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.  相似文献   

9.
A variety of polymers of synthetic origins (e.g., poly(ethylene glycol) or PEG) and macromolecules derived from natural resources (e.g., silk fibroin or SF) have been explored as the backbone materials for hydrogel crosslinking. Purely synthetic PEG‐based hydrogels are often chemically crosslinked to possess limited degradability, unless labile motifs are designed and integrated into the otherwise non‐degradable macromers. On the other hand, SF produced by Bombyx mori silkworm can be easily formulated into physical hydrogels. These physical gels, however, are less stable than the chemically crosslinked gels. Here, we present a simple strategy to prepare hybrid PEG‐SF hydrogels with chemically crosslinked PEG network and physically entrapped SF. Visible light irradiation initiated rapid thiol‐acrylate gelation to produce a network composed of non‐degradable poly(acrylate‐co‐NVP) chains, hydrolytically labile thioether ester bonds, and interpenetrating SF fibrils. We evaluated the effect of SF entrapment on the crosslinking efficiency and hydrolytic degradation of thiol‐acrylate PEG hydrogels. We further examined the effect of adding soluble SF or sonicated SF (S‐SF) on physical gelation of the hybrid materials. The impacts of SF or S‐SF inclusion on the properties of chemically crosslinked hybrid hydrogels were also studied, including gel points, gel fraction, equilibrium swelling ratio, and mesh size. We also quantified the fraction of SF retention in PEG hydrogels, as well as the influence of remaining SF on moduli and degradation of chemically crosslinked thiol‐acrylate PEG hydrogels. This simple hybrid hydrogel fabrication strategy should be highly useful in future drug delivery and tissue engineering applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43075.  相似文献   

10.
An injectable hybrid hydrogel is synthesized, comprising silk fibroin (SF) and chondroitin sulfate (CS) through di-tyrosine formation bond of SF chains. CS and SF are reported with excellent biocompatibility as tissue engineering scaffolds. Nonetheless, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate articular cartilage. As CS is one of the cartilage extracellular matrix (ECM) components, it has the potential to enhance the biological activity of SF-based hydrogel in terms of cartilage repair. Therefore, altering the CS concentrations (i.e., 0 wt%, 0.25 wt%, 0.5 wt%, 1 wt%, and 2 wt%), which are interpenetrated between SF β-sheets and chains, can potentially adjust the physical, chemical, and mechanical features of these hybrid hydrogels. The formation of β-sheets by 30 days of immersion in de-ionized (DI) water can improve the compression strength of the SF/CS hybrid hydrogels in comparison with the same SF/CS hybrid hydrogels in the dried state. Biological investigation and observation depicts proper cell attachment, proliferation and cell viability for C28/I2 cells. Gene expression of sex-determining region YBox 9 (SOX9), Collagen II α1, and Aggrecan (AGG) exhibits positive C3H10T1/2 growth and expression of cartilage-specific genes in the 0.25 wt% and 0.5 wt% SF/CS hydrogels.  相似文献   

11.
Chang Seok Ki  In Chul Um  Young Hwan Park   《Polymer》2009,50(19):4618-4625
Although silk sericin (SS) occupies 25% of silk protein, its importance has often been overlooked in the natural silk spinning process and in the formation of the crystalline structure of silk fibroin (SF). In this study, we elucidated the role of SS in the crystallization process of SF under shear using SF/SS blend solutions. In order to apply shear stress to the blend solution, a rotating glass rod was inserted into a glass tube filled with the solution and the shear rate was determined to be in the range of 598–724 s−1. After shearing, SF aggregates were formed and the amount of the aggregates increased with shearing time. Additionally, it was observed that the aggregate formation and β-sheet transition of SF were enhanced when a proper amount of SS was in the blend solution. Consequently, the SS considerably contributes to the structural transition of SF under shear. The SS can improve the shear-induced β-sheet transition and crystallization of SF.  相似文献   

12.
Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO2 produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis.  相似文献   

13.
In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, 13C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The 1H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using 1H–1H distance constraints obtained from the 1H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra.  相似文献   

14.
Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM) and including new biomaterials could produce a better substitute for new bone tissue formation. A purpose of this study is to analyze polycaprolactone/silk fibroin/hyaluronic acid/minocycline hydrochloride (PCL/SF/HA/MH) nanoparticles initiate human mesenchymal stem cells (MSCs) proliferation and differentiation into osteogenesis. Electrospraying technique was used to develop PCL, PCL/SF, PCL/SF/HA and PCL/SF/HA/MH hybrid biocomposite nanoparticles and characterization was analyzed by field emission scanning electron microscope (FESEM), contact angle and Fourier transform infrared spectroscopy (FT-IR). The obtained results proved that the particle diameter and water contact angle obtained around 0.54 ± 0.12 to 3.2 ± 0.18 µm and 43.93 ± 10.8° to 133.1 ± 12.4° respectively. The cell proliferation and cell-nanoparticle interactions analyzed using (3-(4,5-dimethyl thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) MTS assay (Promega, Madison, WI, USA), FESEM for cell morphology and 5-Chloromethylfluorescein diacetate (CMFDA) dye for imaging live cells. Osteogenic differentiation was proved by expression of osteocalcin, alkaline phosphatase activity (ALP) and mineralization was confirmed by using alizarin red (ARS). The quantity of cells was considerably increased in PCL/SF/HA/MH nanoparticles when compare to all other biocomposite nanoparticles and the cell interaction was observed more on PCL/SF/HA/MH nanoparticles. The electrosprayed PCL/SF/HA/MH biocomposite nanoparticle significantly initiated increased cell proliferation, osteogenic differentiation and mineralization, which provide huge potential for bone tissue engineering.  相似文献   

15.
In early-stage Parkinson′s disease (PD), cognitive impairment is common, and a variety of cognitive domains including memory, attention, and executive functioning may be affected. Cerebrospinal fluid (CSF) biomarkers are potential markers of cognitive functioning. We aimed to explore whether CSF α-synuclein species, neurofilament light chain, amyloid-β42, and tau are associated with cognitive performance in early-stage PD patients. CSF levels of total-α-synuclein and phosphorylated-α-synuclein, neurofilament light chain, amyloid-β42, and total-tau and phosphorylated-tau were measured in 26 PD patients (disease duration ≤5 years and Hoehn and Yahr stage 1–2.5). Multivariable linear regression models, adjusted for age, gender, and educational level, were used to assess the relationship between CSF biomarker levels and memory, attention, executive and visuospatial function, and language performance scores. In 26 early-stage PD patients, attention and memory were the most commonly affected domains. A higher CSF phosphorylated-α-synuclein/total-α-synuclein ratio was associated with better executive functioning (sβ = 0.40). Higher CSF neurofilament light was associated with worse memory (sβ = −0.59), attentional (sβ = −0.32), and executive functioning (sβ = −0.35). Reduced CSF amyloid-β42 levels were associated with poorer attentional functioning (sβ = 0.35). Higher CSF phosphorylated-tau was associated with worse language functioning (sβ = −0.33). Thus, CSF biomarker levels, in particular neurofilament light, were related to the most commonly affected cognitive domains in early-stage PD. This indicates that CSF biomarker levels may identify early-stage PD patients who are at an increased risk of developing cognitive impairment.  相似文献   

16.
Nano SiO2 and MgO particles were incorporated into β-tricalcium phosphate (β-TCP) scaffolds to improve the mechanical and biological properties. The porous cylindrical β-TCP scaffolds doped with 0.5 wt % SiO2, 1.0 wt % MgO, 0.5 wt % SiO2 + 1.0 wt % MgO were fabricated via selective laser sintering respectively and undoped β-TCP scaffold was also prepared as control. The phase composition and mechanical strength of the scaffolds were evaluated. X-ray diffraction analysis indicated that the phase transformation from β-TCP to α-TCP was inhibited after the addition of MgO. The compressive strength of scaffold was improved from 3.12 ± 0.36 MPa (β-TCP) to 5.74 ± 0.62 MPa (β-TCP/SiO2), 9.02 ± 0.55 MPa (β-TCP/MgO) and 10.43 ± 0.28 MPa (β-TCP/SiO2/MgO), respectively. The weight loss and apatite-forming ability of the scaffolds were evaluated by soaking them in simulated body fluid. The results demonstrated that both SiO2 and MgO dopings slowed down the degradation rate and improved the bioactivity of β-TCP scaffolds. In vitro cell culture studies indicated that SiO2 and MgO dopings facilitated cell attachment and proliferation. Combined addition of SiO2 and MgO were found optimal in enhancing both the mechanical and biological properties of β-TCP scaffold.  相似文献   

17.
A continuing challenge in cartilage tissue engineering for cartilage regeneration is the creation of a suitable synthetic microenvironment for chondrocytes and tissue regeneration. The aim of this study was to develop a highly tunable hybrid scaffold based on a silk fibroin matrix (SM) and a hyaluronic acid (HA) hydrogel. Human articular chondrocytes were embedded in a porous 3-dimensional SM, before infiltration with tyramine modified HA hydrogel. Scaffolds were cultured in chondropermissive medium with and without TGF-β1. Cell viability and cell distribution were assessed using CellTiter-Blue assay and Live/Dead staining. Chondrogenic marker expression was detected using qPCR. Biosynthesis of matrix compounds was analyzed by dimethylmethylene blue assay and immuno-histology. Differences in biomaterial stiffness and stress relaxation were characterized using a one-step unconfined compression test. Cell morphology was investigated by scanning electron microscopy. Hybrid scaffold revealed superior chondro-inductive and biomechanical properties compared to sole SM. The presence of HA and TGF-β1 increased chondrogenic marker gene expression and matrix deposition. Hybrid scaffolds offer cytocompatible and highly tunable properties as cell-carrier systems, as well as favorable biomechanical properties.  相似文献   

18.
利用丝素(SF)与羧甲基壳聚糖(CMCS)共混制取不同比例的SF/CMCS共混膜。研究了CMCS诱导的丝素构象转变行为,测试了共混膜的吸湿性、透湿性和保水性。当CMCS的质量分数为5%时,共混膜中丝素的构象以β-折叠为主;当CMCS的质量分数为10%时,共混膜中丝素的构象由β-折叠向α-螺旋发生转变;当CMCS的质量分数达到15%时,共混膜中丝素的构象向无规卷曲发生转变。当CMCS质量分数小于15%时,共混膜中SF与CMCS具有良好的相容性,溶胀度较小,吸湿性随CMCS含量的增加而迅速降低。  相似文献   

19.
Fast advances in polymer science have provided new hydrogels for applications in drug delivery. Among modern drug formulations, polymeric type stimuli-responsive hydrogels (SRHs), also called smart hydrogels, deserve special attention as they revealed to be a promising tool useful for a variety of pharmaceutical and biomedical applications. In fact, the basic feature of these systems is the ability to change their mechanical properties, swelling ability, hydrophilicity, or bioactive molecules permeability, which are influenced by various stimuli, particularly enzymes. Indeed, among a great number of SHRs, enzyme-responsive hydrogels (ERHs) gain much interest as they possess several potential biomedical applications (e.g., in controlled release, drug delivery, etc.). Such a new type of SHRs directly respond to many different enzymes even under mild conditions. Therefore, they show either reversible or irreversible enzyme-induced changes both in chemical and physical properties. This article reviews the state-of-the art in ERHs designed for controlled drug delivery systems (DDSs). Principal enzymes used for biomedical hydrogel preparation were presented and different ERHs were further characterized focusing mainly on glucose oxidase-, β-galactosidase- and metalloproteinases-based catalyzed reactions. Additionally, strategies employed to produce ERHs were described. The current state of knowledge and the discussion were made on successful applications and prospects for further development of effective methods used to obtain ERH as DDSs.  相似文献   

20.
A novel physical blend method was developed to accelerate the self‐assembly process of silk fibroin (SF) solution into porous and nanofibrous hydrogel by temperature‐sensitive copolymer. Silk‐based hydrogel was firstly achieved through blending SF solution with copolymer aqueous solution and then removed the copolymer from blend solution by heat treatment (50°C) after 24 h hydrogelation. Copolymer molecules would interact with SF molecules resulting in reduction of copolymer micelles, which further affect the hydrogelation of SF solutions. Copolymers could be separated from blend solution by heat treatment under an acceptable temperature (50°C), especially the copolymer2. Fourier transform infrared (FTIR) and X‐ray diffraction showed the blending of copolymer significantly accelerated the self‐assembly of SF into physically crosslinked β‐sheet crystals at room temperature which led to the sol‐gel transition. Results from DTA and X‐ray diffraction showed that the effect of copolymer on crystalline structure of SF in silk‐based hydrogel was very weak. SF molecules transformed from distributed globular nanoparticles to nanofilaments clustered during hydrogelation, resulting in the porous and nanofibrous structure of silk‐based hydrogel. Furthermore, silk‐based hydrogel was prepared in aqueous solution avoiding organic solvents and harsh processing conditions, suggesting that this silk‐based hydrogel could be a potential candidate scaffold for biomedical applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号