首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignin, extracted from sugarcane bagasse by the organosolv process, was used as a partial substitute of phenol (40 w/w) in resole phenolic matrices. Short sugarcane fibers were used as reinforcement in these polymeric matrices to obtain fiber‐reinforced composites. Thermoset polymers (phenolic and lignophenolic) and related composites were obtained by compression molding and characterized by mechanical tests such as impact, differential mechanical thermoanalysis (DMTA), and hardness tests. The impact test showed an improvement in the impact strength when sugarcane bagasse was used. The inner part of the fractured samples was analyzed by scanning electron microscopy (SEM), and the results indicated adhesion between fibers and matrix, because the fibers are not set free, suggesting they suffered a break during the impact test. The modification of fiber surface (mercerization and esterification) did not lead to an improvement in impact strength. The results as a whole showed that it is feasible to replace part of phenol by lignin in phenolic matrices without loss of properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 880–888, 2002  相似文献   

2.
Summary: A new chemical modification of sugar cane bagasse fibers for phenolic thermoset composites is presented. It consists in creating quinones in the lignin portions of fiber and react them with furfuryl alcohol to create a coating around the fiber more compatible with the phenolic resins used to prepare polymeric matrix. Sodium periodate was used in suitable conditions to oxidize mainly phenolic syringyl and guaiacyl units of the lignin polymer to create quinones, which were characterized by UV‐visible diffuse reflectance spectroscopy by comparison with model compounds. The reactivity of furfuryl alcohol (FA) with fibers was greatly enhanced after they were oxidized: 13% weight percent gain compared to 2% without oxidation. Chemical analysis of unmodified and FA‐modified fibers have shown an important degradation of hemicelluloses and a slight one of cellulose which almost maintains its crystallinity. A 25% decrease of strength and length properties of the fibers after FA chemical treatment was measured by dynamic mechanical analysis. The lignin‐like proportion of the fiber was greatly enhanced after the FA‐treatment. This was confirmed by thermal analysis, DSC, and TGA experiments, on unmodified and FA‐modified fibers. SEM analysis of the fibers and of phenolic composites with modified fibers have confirmed the FA grafting and shown a better compatibility at the interface between the chemically modified fibers and the phenolic matrix. Nevertheless, the chemical treatment of the fibers decreased the impact strength of the composite, which could be caused by the fiber damage suffered during the chemical modification and for the more intense adhesion at the interface, which in some cases decrease somewhat the impact strength.

Cross photomicrography of FA‐modified sugar cane bagasse fiber (600×).  相似文献   


3.
Leather-like composites were prepared by addition of chemically modified short leather fibers (SLF) into a plasticized polyvinyl chloride (pPVC) matrix. The fibers were subjected to chemical modification by emulsion polymerization to achieve good interfacial adhesion between SLF and the pPVC matrix. The SLF with chemical modification were obtained from three different reaction conditions where these SLF have different percentages of grafted and deposited PMMA polymer onto the fiber surface. The incorporation of the SLF into the thermoplastic matrix was carried out using a torque-rheometer and the composites obtained were molded by compression. Tensile and tear mechanical tests were performed on composite samples, and the morphology of the fractured surfaces was analyzed using scanning electron microscopy (SEM). The results show that the incorporation by grafting of polymethyl metacrylate (PMMA) onto the fibers produced a significant improvement of their interfacial adhesion to pPVC, promoting the compatibilization between the fiber surface and matrix. The findings are discussed and interpreted in terms of enhanced adhesion at phase boundaries. Overall, the results confirm that it is possible to produce modified leather composites based on a pPVC matrix, which exhibit relatively high tensile strength, tear resistance and flexibility. These composites are very suitable candidate materials for applications in the footwear industry.  相似文献   

4.
The present work describes the preparation of polypropylene composites reinforced with cotton fibers, which were obtained from textile waste. The cellulosic fibers were bleached and then chemically modified on the surface using acetylation or silanization methods. Fourier transform infrared spectroscopy analysis and energy dispersive X‐ray spectroscopy confirmed the efficiency of both treatments. Results of thermal degradation by thermogravimetric analysis (TGA) of treated fibers indicated that the acetylated ones decreased thermal stability while the silanized fibers increased this property. The influence of the chemical modifications and fibers content in polypropylene‐based composites was studied by thermomechanical and mechanical properties (dynamic mechanical analysis and tensile tests) and thermal analyses (TGA and differential scanning calorimetry). The results showed that the addition of the obtained cellulose fibers in polypropylene caused increase of storage and Young's moduli, along with stress at break. Moreover, scanning electronic microscopy micrographs of cryofractured surfaces revealed stronger adhesion between fiber and matrix in the composites reinforced with the modified fibers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45060.  相似文献   

5.
Composites were prepared with chemically modified banana fibers in polypropylene (PP). The effects of 40‐mm fiber loading and resin modification on the physical, mechanical, thermal, and morphological properties of the composites were evaluated with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy, and so on. Maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer was used to improve the fiber‐matrix adhesion. SEM studies carried out on fractured specimens indicated poor dispersion in the unmodified fiber composites and improved adhesion and uniform dispersion in the treated composites. A fiber loading of 15 vol % in the treated composites was optimum, with maximum mechanical properties and thermal stability evident. The composite with 5% MA‐g‐PP concentration at a 15% fiber volume showed an 80% increase in impact strength, a 48% increase in flexural strength, a 125% increase in flexural modulus, a 33% increase in tensile strength, and an 82% increase in tensile modulus, whereas the heat deflection temperature increased by 18°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Summary: Fiberboards were prepared using phenolic type resins (phenol‐formaldehyde) and sugarcane bagasse fibers. Lignin extracted through an organosolv process from sugarcane bagasse was used as substitute of phenol in phenolic resins from 40 (lignin‐phenol‐formaldehyde) to 100 wt.‐% (lignin‐formaldehyde) substitution. Some of the fibers were chemically modified by oxidation with chlorine dioxide and treatment with furfuryl alcohol (FA), leading to fibers coated with polyfurfuryl alcohol. Thermal analysis (DSC and TGA) of the prepolymers allowed setting up an efficient curing to prepare fiberboards. Impact strength and water absorption were measured showing the importance of the curing pressure to obtain good performance. When chemically modified fibers were used to prepare board samples, enhanced durability against white root fungi is observed, and to a less degree against brown root fungi. Sugarcane bagasse fiberboards were prepared from prepolymers where lignin substituted phenol up to 100%. This replaces these materials in advantageous position, relating to those prepared from phenol‐formaldehyde resins, due to their high content of renewable raw materials. The results obtained are promising for the utilization of sugarcane bagasse as raw materials for preparing fiberboards to be used in tropical areas.

Stabilization of sugarcane bagasse fiberboards made with unmodified and modified (ClO2 + furfuryl alcohol) fibers and phenolic resin after 8 weeks exposure against fungi.  相似文献   


7.
Natural fibers are widely used as reinforcement in composites. Pine needles are one of the major biowaste generated by Pinus roxburgii plant. This species is found abundantly in the forests of Himachal Pradesh. In this work, composites of urea–resorcinol–formaldehyde resin‐reinforced with Pine needles fibers were prepared. Fibers were chemically modified to improve their compatibility with matrix. These fibers were mercerized with NaOH solution and acetylated to increase their hydrophobic character. The chemically modified fibers were characterized with Fourier transform infrared spectra, 13C‐nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy. The composites were prepared with treated and untreated fibers containing 30% fibers by weight using compression molding technique. The morphology of the materials thus obtained was evaluated by scanning electron microscopy. The chemical modifications of fibers improve fiber–matrix adhesion and also have markedly effect on mechanical properties of composites. Moreover, the thermal resistance of these composites was improved on chemical modification. These results indicate that chemically modified fibers exhibit better compatibility with the polymer matrix than that of untreated fiber. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci, 2013  相似文献   

8.
In this work, composites based on a phenolic matrix and untreated‐ and treated sisal fibers were prepared. The treated sisal fibers used were those reacted with NaOH 2% solution and esterified using benzophenonetetracarboxylic dianhydride (BTDA). These treated fibers were modified with the objective of improving the adhesion of the fiber–matrix interface, which in turn influences the properties of the composites. BTDA was chosen as the esterifying agent to take advantage of the possibility of introducing the polar and aromatic groups that are also present in the matrix structure into the surface of the fiber, which could then intensify the interactions occurring in the fiber–matrix interface. The fibers were then analyzed by SEM and FTIR to ascertain their chemical composition. The results showed that the fibers had been successfully modified. The composites (reinforced with 15%, w/w of 3.0 cm length sisal fiber randomly distributed) were characterized by SEM, impact strength, and water absorption capacity. In the tests conducted, the response of the composites was affected both by properties of the matrix and the fibers, besides the interfacial properties of the fiber–matrix. Overall, the results showed that the fiber treatment resulted in a composite that was less hygroscopic although with somewhat lower impact strength, when compared with the composite reinforced with untreated sisal fibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The aim of this paper is to evaluate the mechanical and thermal properties of sisal fiber reinforced epoxy matrix composites as a function of modification of sisal fiber by using mercerization and silane treatments. The changes introduced by the treatments on the chemical structure of sisal fibers have been analyzed by infrared spectroscopy (FTIR). Thermal behavior of both sisal fibers and composites has been studied by thermogravimetric analysis (TGA). Both treatments clearly enhanced thermal performance and also mechanical properties of fibers, being other physical properties also modified. Mercerization, above all when combined with silanization, led to significant enhancement on mechanical properties of composites as a consequence of increasing mechanical properties of fibers and improving fiber/matrix adhesion. POLYM. COMPOS., 26:121–127, 2005. © 2005 Society of Plastics Engineers  相似文献   

10.
Polymer composites from polylactic acid (PLA) and two types of cellulose fibers obtained either by acid hydrolysis of microcrystalline cellulose (HMCC) or by mechanical disintegration of regenerated wood fibers (MF) were prepared and characterized. To enhance the compatibility of the cellulose fibers with PLA matrix, a surface treatment based on 3‐aminopropyltriethoxysilane (APS) was performed. The Fourier Transform Infrared (FTIR) spectroscopy was used to determine the chemical groups involved in the surface modification reaction. The silanization treatment resulted in different modifications on both types of cellulose fibers because of their different structural and morphological characteristics. The composites were prepared by incorporating 2.5% of the treated or untreated HMCC and MF into a PLA matrix using a melt‐compounding technique. An improved adhesion between the two phases of the composite materials was observed by scanning electron microscopy thanks to treatment. The dynamic mechanical thermal analyses showed that both untreated and silane treated fibers led to an improvement of the storage modulus of PLA in the glassy state. A higher enhancement of the storage modulus in the case of PLA/HMCC composites than the composites containing MF was obtained as a result of the high aspect ratio of these fibers which allows better matrix‐to‐filler stress transfer. Furthermore, the storage modulus of PLA composites was enhanced by silanization even at higher temperatures especially after thermal treatment. The cellulose fibers addition in PLA matrix modified significantly the relaxation phenomenon as observed in tan δ curves, emphasizing strongly modified molecular mobility of PLA macromolecules and crystallization changes. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers.  相似文献   

11.
12.
Flax fibers are widely used as reinforcements in bio‐based polymer matrix composites. This study investigated the hydrophilic nature and surface purity of flax fiber that affects fiber/matrix adhesion in combination with hydrophobic structural polymers via matrix modification and the utilization of fiber treatment, specifically in a flax/vinyl ester (VE) composite. A new method to manipulate the vinyl ester system with acrylic resin (AR) was developed to produce flax reinforced. On the other hand, different types of chemical and physical treatments were applied on the flax fiber. FTIR was applied to evaluate the effects of surface treatments. Dynamic mechanical analysis (DMA) was used to analyze the unmodified and modified VE resin system. The surface of untreated and treated flax fibers and their composites were analyzed by scanning electronic microscopy (SEM). Sodium ethoxide‐treated flax/VE with 1% (wt) AR caused the best mechanical performance among all the flax/VE composites evaluated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
We reported a new facile method to synthesize superhydrophobic nanosilica using glycidoxypropyltrimethoxysilane and dodecylamine as treatment agents. Also, we systemically investigate their performance in reinforcement of poly(dimethylsiloxane) (PDMS) rubber. Fourier transform infrared spectrum, contact angle (CA) and thermogravimetric analysis (TGA) measurements were used to characterize the modified nanosilica. Results show that the inherent hydrophilicity of parent nanosilica surface can be greatly altered through this modification method. The CA of as‐prepared superhydrophobic nanosilica can reach 160.2°. The properties of as‐prepared modified nanosilica‐filled PDMS composites were systemically investigated by dynamic rheological test, scanning electron microscopy, TGA, dynamic mechanical analysis. These as‐prepared superhydrophobic nanosilica exhibit uniform dispersion in the PDMS matrix, and their composites also show good mechanical properties and distinct advantage on thermal stability compared with those of the pure silica‐filled PDMS composites. Also described is the probable mechanism for the reinforcement of as‐prepared superhydrophobic nanosilica‐filled PDMS. POLYM. COMPOS., 31:1628–1636, 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
A challenge facing engineering with natural fibers is the high standard deviation of mechanical properties of natural fiber compared with synthetic fiber. Plants have a chemical and physical architecture reflective of their age. The region near the apex is more flexible than that near the base. In this paper we investigate the impact of increasing age of plant fiber on the corresponding composite. Bast fibers stems of kenaf (Hibiscus cannabinus, L.), a warm season tropical herbaceous annual plant extracted corresponding to different age, were dispersed into Poly‐l ‐lactide (PLLA) matrix by melt blending followed by compression molding. The resulting bio‐based hybrid composites were characterized by X‐ray diffraction (XRD), attenuated total reflectance‐Fourier transfer infrared spectroscopy (ATR‐FTIR), differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) were conducted. DSC and XRD indicated that the kenaf was effective in promoting crystallization. TGA indicated that the thermal stability of composites is reduced compared with PLLA, but the older fiber sample based on 120–150 cm from the plant apex improved thermal stability compared with the rest. SEM and OM inferred good fiber dispersion while dynamic mechanical tests revealed increased modulus. POLYM. COMPOS., 35:915–924, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
To improve the interfacial adhesion between the meta‐aramid fibers and the matrix, the new method of interfacial polymerization was used to complete the aramid's surface modification. Two new kinds of grafted fibers which had liquid crystalline properties were prepared. The structure and properties of the aramid fibers before and after modification were characterized by scanning electron microscope (SEM), Fourier transform infrared, differential scanning calorimetry, and polarizing optical microscope. The surface of grafted aramid fibers was very rough. The range of liquid crystalline phase of the grafted fibers AF‐1 and AF‐2 on the cooling scan, respectively, is from 147 to 209°C and from 163 to 221°C. It was novel that the grafted fibers with rigid‐rod structure had typical nematic texture. The grafted aramid fibers as the ideal substitute material of asbestos were used as reinforcing fibers in nitrile butadiene rubber (NBR) matrix. Combining with NBR, the composites reinforced with the unmodified and grafted aramid fibers were synthesized. The micrographs of the composites' fractured surface were studied by SEM. The mechanical properties of the grafted fibers/NBR composites were superior to the unmodified fibers/NBR composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Polypropylene/bagasse fiber composites were prepared by compounding polypropylene (PP) with bagasse fibers as reinforcing filler. Surfaces of fibers were modified through the use of silane coupling agents (Vinyltrimethoxysilane and γ‐Glycidoxypropyltrimethoxysilane). The fiber coating was performed by mixing of silane with fibers and cured through microwave oven in presence of catalyst. It was found that modification of surface fiber will change the physical, mechanical, morphological, and rheological properties of composite. It was observed from scanning electron microscopy that fiber adhesion to matrix has been improved and so as dispersion. Addition of fibers increases the melt viscosity in unmodified fibers but reduced the melt viscosity for modified fibers and even the viscosity is lower at higher loading compared with unmodified fibers. The tensile strength and tensile modulus increased in modified fibers compared with the unmodified on the same loading, but elongation at break decreased. The effect of coupling agent on properties of filled PP depend on the content of coupling agents and optimum amount was achieve through measurement of water absorption. Two types of coupling agents were used, one as A‐171 [CH2CHSi (OCH3)3] and second one as A‐187 [CH2OCHCH2O (CH2)3Si(OCH3)], the first one shows better adhesion to the fibers and improvements in mechanical properties are much better compared with the second one. POLYM. COMPOS., 28:713–721, 2007. © 2007 Society of Plastics Engineers  相似文献   

17.
《Polymer Composites》2017,38(12):2852-2862
Coconut shell fiber‐reinforced polypropylene (PP/CSP) biocomposites were prepared by using hand lay‐out technique with different fractions of the modified fibers. Before proceeding to fabrication method, fibers were made compatible by chemical modification with acrylic acid. The interaction of acrylic modified coconut shell fibers with PP matrix was studied by using Fourier transforms Infrared spectroscopy. The morphology of chemically modified coconut fibers and coconut shell fibers reinforced polypropylene biocomposites were studied by using field emission scanning electron microscope. Due to strong interfacial interaction between PP and CSP, mechanical properties were improved. It was found that the tensile strength, elongation at break and loss modulus, rigidity of PP bio‐composites were investigated as compared with that of virgin PP matrix. The thermal properties of the fabricated biocomposites were investigated by using thermogravimetric analysis. The semi‐ductile properties of the fabricated PP biohybrids were confirmed through erosion ring test. POLYM. COMPOS., 38:2852–2862, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
In this article, the results of the design of recycling–reuse facilities for transformation of solid–polymer composite waste into polymer mortars and concrete structures for the low‐cost building industry have been presented. Thermoplastic polymer matrix composites based on polylactic acid (PLA) reinforced with natural fibers (rice husks and kenaf fibers) have been recycled and reused as reinforcement. Polymer mortars with unsaturated polyester resin as a binder (commercially available orthophthalic liquid polyester with 35% monomer content) have been prepared by mixing foundry sand and milled recycled eco‐composites (milled size of 0.050 mm) in mix proportions of 40/20/40 %/% wt. The obtained materials have been analyzed with standard test methods (mechanical tests, thermogravimetrical analysis (TGA), dynamic‐mechanical analysis (DMTA), differential scanning calorimtery (DSC), and scanning electron microscopy (SEM)). POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

19.
Curaua fibers were studied as reinforcing agents for postconsumer polypropylene. The composites were processed by extrusion. The composite properties were investigated by mechanical tests, thermal methods, melt flow index, surface morphology, and water uptake. The variables studied were as follows: fiber contents (10 to 40 wt %), fiber surface treatment, initial fiber length, and modification of the polypropylene matrix. The treatment of the fiber with 5 wt % NaOH aqueous solution did not improve fiber‐matrix adhesion and the composites using 20 wt % of untreated curaua fibers presented the better mechanical properties. Feeding the extruder with fibers having shorter lengths (0.01–0.4 mm) produced better fiber dispersion, improving the mechanical properties of the composites. Composites prepared using fibers without surface treatment with postconsumer polypropylene and with polypropylene modified with maleic anhydride showed mechanical properties and water uptake similar to composites using the same polymer reinforced with other lignocellulosic fibers. The extrusion process caused also partial fibrillation of the fibers, improving their aspect ratio. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
纳米二氧化硅增强增韧环氧树脂的研究   总被引:37,自引:1,他引:37  
通过原位分散聚合法制得了环氧树脂 /纳米二氧化硅 ( nm Si O2 )复合材料。利用拉伸试验、冲击试验、扫描电镜、热重分析等方法研究了该复合材料的结构和性能。结果表明 nm Si O2 均匀地分散在环氧树脂基体中 ,有效地改善了环氧树脂的力学性能 ,并且材料的耐热性也有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号