首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic layer deposition (ALD) of thin Al2O3 (≤10 nm) films is used to improve the rear surface passivation of large‐area screen‐printed p‐type Si passivated emitter and rear cells (PERC). A blister‐free stack of Al2O3/SiOx/SiNx is developed, leading to an improved back reflection and a rear recombination current (J0,rear) of 92 ± 6 fA/cm2. The Al2O3/SiOx/SiNx stack is blister‐free if a 700°C anneal in N2 is performed after the Al2O3 deposition and prior to the SiOx/SiNx capping. A clear relationship between blistering density and lower open‐circuit voltage (VOC) due to increased rear contacting area is shown. In case of the blister‐free Al2O3/SiOx/SiNx rear surface passivation stack, an average cell efficiency of 19.0% is reached and independently confirmed by FhG‐ISE CalLab. Compared with SiOx/SiNx‐passivated PERC, there is an obvious gain in VOC and short‐circuit current (JSC) of 5 mV and 0.2 mA/cm2, respectively, thanks to improved rear surface passivation and rear internal reflection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A solar cell process designed to utilise low‐temperature plasma‐enhanced chemical vapour deposited (PECVD) silicon nitride (SiNx) films as front and rear surface passivation was applied to fabricate multicrystalline silicon (mc‐Si) solar cells. Despite the simple photolithography‐free processing sequence, an independently confirmed efficiency of 18.1% (cell area 2 × 2 cm2) was achieved. This excellent efficiency can be predominantly attributed to the superior quality of the rear surface passivation scheme consisting of an SiNx film in combination with a local aluminium back‐surface field (LBSF). Thus, it is demonstrated that low‐temperature PECVD SiNx films are well suited to achieve excellent rear surface passivation on mc‐Si. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Spectral response of solar cells determines the output performance of the devices. In this work, a 20.0% efficient silicon (Si) nano/microstructures (N/M‐Strus) based solar cell with a standard solar wafer size of 156 × 156 mm2 (pseudo‐square) has been successfully fabricated, by employing the simultaneous stack SiO2/SiNx passivation for the front N/M‐Strus based n+‐emitter and the rear surface. The key to success lies in the excellent broadband spectral responses combining the improved short‐wavelength response of the stack SiO2/SiNx passivated Si N/M‐Strus based n+‐emitter with the extraordinary long‐wavelength response of the stack SiO2/SiNx passivated rear reflector. Benefiting from the broadband spectral response, the highest open‐circuit voltage (Voc) and short‐circuit current density (Jsc) reach up to 0.653 V and 39.0 mA cm?2, respectively. This high‐performance screen‐printed Si N/M‐Strus based solar cell has shown a very promising way to the commercial mass production of the Si based high‐efficient solar cells.  相似文献   

4.
This paper reports on the implementation of carrier‐selective tunnel oxide passivated rear contact for high‐efficiency screen‐printed large area n‐type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open‐circuit voltage iVoc of 714 mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back‐end high temperature process. In combination with an ion‐implanted Al2O3‐passivated boron emitter and screen‐printed front metal grids, this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n‐type Czochralski wafers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we evaluate p‐type passivated emitter and rear locally diffused (p‐PERL) and n‐type passivated emitter and rear totally diffused (n‐PERT) large area silicon solar cells featuring nickel/copper/silver (Ni/Cu/Ag) plated front side contacts. By using front emitter p‐PERL and rear emitter n‐PERT, both cell structures can be produced with only a few adaptations in the entire process sequence because both feature the same front side design: homogeneous n+ diffused region with low surface concentration, SiO2/SiNx:H passivation, Ni/Cu/Ag plated contacts. Energy conversion efficiencies up to 20.5% (externally confirmed at FhG‐ISE Callab) are presented for both cell structures on large area cells together with power‐loss analysis and potential efficiency improvements based on PC1D simulations. We demonstrate that the use of a rear emitter n‐PERT cell design with Ni/Cu/Ag plated front side contacts enables to reach open‐circuit voltage values up to 676 mV on 1–2 Ω cm n‐type CZ Si. We show that rear emitter n‐PERT cells present the potential for energy conversion efficiencies above 21.5% together with a strong tolerance to wafer thickness and bulk resistivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We have presented thin Al2O3 (~4 nm) with SiNx:H capped (~75 nm) films to effectively passivate the boron‐doped p+ emitter surfaces of the n‐type bifacial c‐Si solar cells with BBr3 diffusion emitter and phosphorus ion‐implanted back surface field. The thin Al2O3 capped with SiNx:H structure not only possesses the excellent field effect and chemical passivation, but also establishes a simple cell structure fully compatible with the existing production lines and processes for the low‐cost n‐type bifacial c‐Si solar cell industrialization. We have successfully achieved the large area (238.95 cm2) high efficiency of 20.89% (front) and 18.45% (rear) n‐type bifacial c‐Si solar cells by optimizing the peak sintering temperature and fine finger double printing technology. We have further shown that the conversion efficiency of the n‐type bifacial c‐Si solar cells can be improved to be over 21.3% by taking a reasonable high emitter sheet resistance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
A stack of Al2O3/SiNx dual layer was applied for the back side surface passivation of p-type multi-crystalline silicon solar cells, with laser-opened line metal contacts, forming a local aluminum back surface field (local Al-BSF) structure. A slight amount of Al2O3, wrapping around to the front side of the wafer during the thermal atomic layer deposition process, was found to have a negative influence on cell performance. The different process flow was found to lead to a different cell performance, because of the Al2O3 wrapping around the front surface. The best cell performance, with an absolute efficiency gain of about 0.6% compared with the normal full Al-BSF structure solar cell, was achieved when the Al2O3 layer was deposited after the front surface of the wafer had been covered by a SiNx layer. We discuss the possible reasons for this phenomenon, and propose three explanations as the Ag paste, being hindered from firing through the front passivation layer, degraded the SiNx passivation effect and the Al2O3 induced an inversion effect on the front surface. Characterization methods like internal quantum efficiency and contact resistance scanning were used to assist our understanding of the underlying mechanisms.  相似文献   

8.
Crystalline silicon solar cells based on all‐laser‐transferred contacts (ALTC) have been fabricated with both front and rear metallization achieved through laser induced forward transferring. Both the front and rear contacts were laser‐transferred from a glass slide coated with a metal layer to the silicon substrate already processed with emitter formation, surface passivation, and antireflection coating. Ohmic contacts were achieved after this laser transferring. The ALTC solar cells were fabricated on chemically textured p‐type Cz silicon wafers. An initial conversion efficiency of over 15% was achieved on a simple cell structure with full‐area emitter. Further improvements are expected with optimized laser transferring conditions, front grid pattern design, and surface passivation. The ALTC process demonstrates the advantage of laser processing in simplifying the solar cell fabrication by a one‐step metal transferring and firing process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Many solar cells incorporating SiNx films as a rear surface passivation scheme have not reached the same high level of cell performance as solar cells incorporating high‐temperature‐grown silicon dioxide films as a rear surface passivation. In this paper, it is shown by direct comparison of solar cells incorporating the two rear surface passivation schemes, that the performance loss is mainly due to a lower short‐circuit current while the open‐circuit voltage is equally high. With a solar cell test structure that features a separation of the rear metal contacts from the passivating SiNx films, the loss in short‐circuit current can be reduced drastically. Besides a lower short‐ circuit current, dark I–V curves of SiNx rear surface passivated solar cells exhibit distinct shoulders. The results are explained by parasitic shunting of the induced floating junction (FJ) underneath the SiNx films with the rear metal contacts. The floating junction is caused by the high density of fixed positive charges in the SiNx films. Other two‐dimensional effects arising from the injection level dependent SRV of the Si/SiNx interfaces are discussed as well, but, are found to be of minor importance. Pinholes in the SiNx films and optical effects due to a different internal rear surface reflectance can be excluded as a major cause for the performance loss of the SiNx rear surface passivated cells. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
A thin SiOyNx film was inserted below a conventional SiNx antireflection coating used in c‐Si solar cells in order to improve the surface passivation and the solar cell's resistance to potential‐induced degradation (PID). The effect of varying the flow ratio of the N2O and SiH4 precursors and the deposition temperature for the SiOyNx thin film upon material properties were systematically investigated. An excellent surface passivation was obtained on FZ p‐type polished silicon wafers, with the best results obtained with a SiOyNx film deposited at a very low temperature of 130 °C and with an optical refractive index of 1.8. In the SiOyNx/SiNx stack structure, a SiOyNx film with ~6 nm thickness is sufficient to provide excellent surface passivation with an effective surface recombination velocity Seff < 2 cm/s. Furthermore, we applied the optimized SiOyNx/SiNx stack on multicrystalline Si solar cells as a surface passivation and antireflection coating, resulting in a 0.5% absolute average conversion efficiency gain compared with that of reference cells with conventional SiNx coating. Moreover, the cells with the SiOyNx/SiNx stack layers show a significant increase in their resistance to PID. Nearly zero degradation in shunt resistance was obtained after 24 h in a PID test, while a single SiNx‐coated silicon solar cell showed almost 50% degradation after 24 h. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
New passivation layers for the back side of silicon solar cells have to show high performance in terms of electrical passivation as well as high internal reflectivity. This optical performance is often shown as values for the back side reflectance Rb which describes the rear internal reflection. In this paper, we investigate in detail the meaning of this single‐value parameter, its correct determination and the use in one‐dimensional simulations with PC1D. The free‐carrier‐absorption (FCA) as non‐carrier‐generating absorption channel is analyzed for solar cells with varying thickness. We apply the optical analysis to samples with different thickness, silicon oxide layer thickness, rear side topography as well as passivation layers (SiO2, SiNx, SiC and stack systems). Additionally, the optical influence of the laser‐fired contacts (LFC) process is experimentally investigated. Finally, we show that with correct parameters, the one‐dimensional simulation of very thin silicon solar cells can successfully be performed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
We recently introduced the buried emitter back‐junction solar cell, featuring large area fractions of overlap between n+‐type and p+‐type regions at the rear side of the device. In this paper we analyse the performance of the buried emitter solar cell (BESC) and its generalisations by one‐dimensional device simulations and analytical model calculations. A key finding is that the generalised versions of the BESC structure allows achieving very high efficiencies by passivating virtually the entire surface of p‐type emitters by an oxidised n‐type surface layer. A disadvantage of this type of full‐area emitter passivation in the generalised back‐junction BESC is the need for an insulating layer between the metallisation of the emitter and the contact to the base, which is technologically difficult to achieve. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this work we study the optimization of laser‐fired contact (LFC) processing parameters, namely laser power and number of pulses, based on the electrical resistance measurement of an aluminum single LFC point. LFC process has been made through four passivation layers that are typically used in c‐Si and mc‐Si solar cell fabrication: thermally grown silicon oxide (SiO2), deposited phosphorus‐doped amorphous silicon carbide (a‐SiCx/H(n)), aluminum oxide (Al2O3) and silicon nitride (SiNx/H) films. Values for the LFC resistance normalized by the laser spot area in the range of 0.65–3 mΩ cm2 have been obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Atomic‐layer‐deposited aluminium oxide (Al2O3) is applied as rear‐surface‐passivating dielectric layer to passivated emitter and rear cell (PERC)‐type crystalline silicon (c‐Si) solar cells. The excellent passivation of low‐resistivity p‐type silicon by the negative‐charge‐dielectric Al2O3 is confirmed on the device level by an independently confirmed energy conversion efficiency of 20·6%. The best results are obtained for a stack consisting of a 30 nm Al2O3 film covered by a 200 nm plasma‐enhanced‐chemical‐vapour‐deposited silicon oxide (SiOx) layer, resulting in a rear surface recombination velocity (SRV) of 70 cm/s. Comparable results are obtained for a 130 nm single‐layer of Al2O3, resulting in a rear SRV of 90 cm/s. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we report on commercially viable screen printing (SP) technology to form boron emitters. A screen‐printed boron emitter and ion‐implanted phosphorus back surface field were formed simultaneously by a co‐annealing process. Front and back surfaces were passivated by chemically grown oxide capped with plasma‐enhanced chemical vapor deposition silicon nitride stack. Front and back contacts were formed by traditional SP and firing processes with silver/aluminum grid on front and local silver back contacts on the rear. This resulted in 19.6% efficient large area (239 cm2) n‐type solar cells with an open‐circuit voltage Voc of 645 mV, short‐circuit current density Jsc of 38.6 mA/cm2, and fill factor of 78.6%. This demonstrates the potential of this novel technology for production of low‐cost high‐efficiency n‐type silicon solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper shows that one second (1 s) firing of Si solar cells with screen‐printed Al on the back and SiN x anti‐reflection coating on the front can produce a high quality Al‐doped back‐surface‐field (Al‐BSF) and significantly enhance SiN x ‐induced defect hydrogenation in the bulk Si. Open‐circuit voltage, internal quantum efficiency measurements, and cross‐sectional scanning electron microscopy pictures on float‐zone silicon cells revealed that 1 s firing in rapid thermal processing at 750°C produces just as good a BSF as 60 s firing, indicating that the quality of Al‐BSF region is not a strong function of RTP firing time at 750°C. Analysis of edge‐defined film‐fed grown (EFG) Si cells showed that short‐term firing is much more effective in improving the hydrogen passivation of bulk defects in EFG Si. Average minority‐carrier lifetime in EFG wafers improved from ∼3 to ∼33 μs by 60 s firing but reached as high as 95μs with 1 s firing, resulting in 15·6% efficient screen‐printed cells on EFG Si. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Laser doping offers a promising method to define selective emitters for solar cells. Its main advantage is the localised nature of the laser beam, which allows melting of the surface area without heating the bulk. The ability to perform this process over a dielectric film offers further benefits, such as the possibility of creating self‐aligned metallisation patterns simultaneously with the selective emitter formation. However, laser induced defects, contaminations and discontinuities in the selective emitter can reduce solar cell performance. In this work the influence of different dielectric films on defect formation is investigated. It was found that a thin oxide beneath the SiNx improves the implied open circuit voltage of the solar cells for a wide range of laser output powers. Fewer defects were observed when using this SiO2/SiNx stack compared to the standard single SiNx anti‐reflection coating layer. It was also found that the recrystallised silicon layer grows epitaxially according the substrate orientation. No dislocation or stacking faults were observed in deeper areas using transmission electron microscopy, although some defects were observed near the surface. Electron beam induced current images revealed discontinuities in junctions formed with high laser powers. We conclude that micro‐cracks create these discontinuities, which can potentially induce shunts. Finally, laser doped solar cells with a standard SiNx and with a double SiO2/SiNx stack layer as anti‐reflection coating were compared. An efficiency of 18.4% on a large area commercial grade p‐type CZ substrate was achieved. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We explore the potential of laser processing aluminium oxide (Al2O3)/amorphous silicon carbide (a‐SiCx:H) stacks to be used at the rear surface of p‐type crystalline silicon (c‐Si) solar cells. For this stack, excellent quality surface passivation is measured with effective surface recombination velocities as low as 2 cm/s. By means of an infrared laser, the dielectric film is locally opened. Simultaneously, part of the aluminium in the Al2O3 film is introduced into the c‐Si, creating p+ regions that allow ohmic contacts with low‐surface recombination velocities. At optimum pitch, high‐efficiency solar cells are achievable for substrates of 0.5–2.5 Ω cm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We report on the progress of imec's n‐type passivated emitter, rear totally diffused rear junction silicon solar cells. Selective laser doping has been introduced in the flow, allowing the implementation of a shallow diffused front surface field and a reduction of the recombination current in the contact area. Simplifications have been implemented towards a more industrial annealing sequence, by replacing expensive forming gas annealing steps with a belt furnace annealing. By applying these improvements, together with an advanced texturing process and emitter passivation by atomic layer deposition of Al2O3, 22.5% efficient cells (three busbars) have been realized on commercial 156 · 156 mm2 Czochralski‐Si. This result has been independently confirmed by ISE CalLab. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Various measurements and experiments are performed to establish the mechanism of passivation on emitter and base of conventionally manufactured solar cell with p‐type base. The surface coatings on the emitter are removed. The bare surface is then coated with silicon (Si) nanoparticles (NPs) with oxygen termination. It shows an increase in the cell efficiency up to 14% over bare surface of solar cell. The NPs show enhancement in light scattering from the surface, but shows an increase in the recombination lifetime indicating an improved passivation. When back contact is partially removed, the coating on bare back side ( p‐type) of the solar cell also improves the cell efficiency. This is also attributable to the increased recombination lifetime from the measurements. Same NPs are seen to degrade the surface of n and p‐type Si wafers. This apparently contradictory behaviour is explained by studying and comparing the emitter (n‐type) surface of the solar cell with that of n‐type Si wafer and the back surface ( p‐type) with that of p‐type Si wafer. The emitter surface is distinctly different from the n‐type wafer because of the shallow p–n junction causing the surface depletion. Back surface has aluminium (Al) metal trace, which plays an important role in forming complexes with the oxygen‐terminated Si NPs (Si–O NPs). With these studies, it is observed that increase in the efficiency can potentially reduce the thermal budget in solar cell preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号