首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
CALR mutations are a revolutionary discovery and represent an important hallmark of myeloproliferative neoplasms (MPN), especially essential thrombocythemia and primary myelofibrosis. To date, several CALR mutations were identified, with only frameshift mutations linked to the diseased phenotype. It is of diagnostic and prognostic importance to properly define the type of CALR mutation and subclassify it according to its structural similarities to the classical mutations, a 52-bp deletion (type 1 mutation) and a 5-bp insertion (type 2 mutation), using a statistical approximation algorithm (AGADIR). Today, the knowledge on the pathogenesis of CALR-positive MPN is expanding and several cellular mechanisms have been recognized that finally cause a clonal hematopoietic expansion. In this review, we discuss the current basis of the cellular effects of CALR mutants and the understanding of its implementation in the current diagnostic laboratorial and medical practice. Different methods of CALR detection are explained and a diagnostic algorithm is shown that aids in the approach to CALR-positive MPN. Finally, contemporary methods joining artificial intelligence in accordance with molecular-genetic biomarkers in the approach to MPN are presented.  相似文献   

2.
Background: Angiogenesis is primarily attributed to the excessive proliferation and migration of endothelial cells. Targeting the vascular endothelial growth factor (VEGF) is therefore significant in anti-angiogenic therapy. Although these treatments have not reached clinical expectations, the upregulation of alternative angiogenic pathways (endoglin/Smad1) may play a critical role in drug (VEGF-neutralizing agents) resistance. Enhanced endoglin expression following a VEGF-neutralizing therapy (semaxanib®) was noted in patients. Treatment with an endoglin-targeting antibody augmented VEGF expression in human umbilical vein endothelial cells (HUVECs). Therefore, approaches that inhibit both the androgen and VEGF pathways enhance the HUVECs cytotoxicity and reverse semaxanib resistance. The purpose of this study was to find natural-occurring compounds that inhibited the endoglin-targeting pathway. Methods: Curcuminoids targeting endoglin were recognized from two thousand compounds in the Traditional Chinese Medicine Database@Taiwan (TCM Database@Taiwan) using Discovery Studio 4.5. Results: Our results, obtained using cytotoxicity, migration/invasion, and flow cytometry assays, showed that curcumin (Cur) and demethoxycurcumin (DMC) reduced angiogenesis. In addition, Cur and DMC downregulated endoglin/pSmad1 phosphorylation. Conclusions: The study first showed that Cur and DMC demonstrated antiangiogenic activity via the inhibition of endoglin/Smad1 signaling. Synergistic effects of curcuminoids (i.e., curcumin and DMC) and semaxanib on HUVECs were found. This might be attributed to endoglin/pSmad1 downregulation in HUVECs. Combination treatment with curcuminoids and a semaxanib is therefore expected to reverse semaxanib resistance.  相似文献   

3.
Complement factor B (CFB), a 95-kDa protein, is a crucial catalytic element of the alternative pathway (AP) of complement. After binding of CFB to C3b, activation of the AP depends on the proteolytic cleavage of CFB by factor D to generate the C3 convertase (C3bBb). The C3 convertase contains the catalytic subunit of CFB (Bb), the enzymatic site for the cleavage of a new molecule of C3 into C3b. In addition to its role in activating the AP, CFB has been implicated in pathological ocular neovascularization, a common feature of several blinding eye diseases, however, with somewhat conflicting results. The focus of this study was to investigate the direct impact of CFB on ocular neovascularization in a tightly controlled environment. Using mouse models of laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR), our study demonstrated an increase in CFB expression during pathological angiogenesis. Results from several in vitro and ex vivo functionality assays indicated a promoting effect of CFB in angiogenesis. Mechanistically, CFB exerts this pro-angiogenic effect by mediating the vascular endothelial growth factor (VEGF) signaling pathway. In summary, we demonstrate compelling evidence for the role of CFB in driving ocular angiogenesis in a VEGF-dependent manner. This work provides a framework for a more in-depth exploration of CFB-mediated effects in ocular angiogenesis in the future.  相似文献   

4.
5.
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) represent a group of hematological disorders that are traditionally considered as indistinct slow progressing conditions; still, a subset of cases shows a rapid evolution towards myelofibrotic bone marrow failure. Specific abnormalities in the megakaryocyte lineage seem to play a central role in this evolution, especially in the bone marrow fibrosis but also in the induction of myeloproliferation. In this review, we analyze the current knowledge of prognostic factors of MPNs related to their evolution to myelofibrotic bone marrow failure. Moreover, we focused the role of the megakaryocytic lineage in the various stages of MPNs, with updated examples of MPNs in vitro and in vivo models and new therapeutic implications.  相似文献   

6.
The last decade has been very important for the quantity of preclinical information obtained regarding chronic myeloproliferative neoplasms (MPNs) and the following will be dedicated to the translational implications of the new biological acquisitions. The overcoming of the mechanistic model of clonal evolution and the entry of chronic inflammation and dysimmunity into the new model are the elements on which to base a part of future therapeutic strategies. The innate immune system plays a major role in this context. Protagonists of the initiation and regulation of many pathological aspects, from cytokine storms to fibrosis, the NLRP3 and AIM2 inflammasomes guide and condition the natural history of the disease. For this reason, MPNs share many biological and clinical aspects with non-neoplastic diseases, such as autoimmune disorders. Finally, cardiovascular risk and disturbances in iron metabolism and myelopoiesis are also closely linked to the role of inflammasomes. Although targeted therapies are already being tested, an increase in knowledge on the subject is desirable and potentially translates into better care for patients with MPNs.  相似文献   

7.
The calcium-binding proteins S100A4, S100A8, and S100A9 are upregulated in chronic lymphocytic leukemia (CLL), while the S100A9 promotes NF-κB activity during disease progression. The S100-protein family has been involved in several malignancies as mediators of inflammation and proliferation. The hypothesis of our study is that S100A proteins are mediators in signaling pathways associated with inflammation-induced proliferation, such as NF-κB, PI3K/AKT, and JAK/STAT. The mononuclear cells (MNCs) of CLL were treated with proinflammatory IL-6, anti-inflammatory IL-10 cytokines, inhibitors of JAK1/2, NF-κB, and PI3K signaling pathways, to evaluate S100A4, S100A8, S100A9, and S100A12 expression as well as NF-κB activation by qRT-PCR, immunocytochemistry, and immunoblotting. The quantity of S100A4, S100A8, and S100A9 positive cells (p < 0.05) and their protein expression (p < 0.01) were significantly decreased in MNCs of CLL patients compared to healthy controls. The S100A levels were generally increased in CD19+ cells compared to MNCs of CLL. The S100A4 gene expression was significantly stimulated (p < 0.05) by the inhibition of the PI3K/AKT signaling pathway in MNCs. IL-6 stimulated S100A4 and S100A8 protein expression, prevented by the NF-κB and JAK1/2 inhibitors. In contrast, IL-10 reduced S100A8, S100A9, and S100A12 protein expressions in MNCs of CLL. Moreover, IL-10 inhibited activation of NF-κB signaling (4-fold, p < 0.05). In conclusion, inflammation stimulated the S100A protein expression mediated via the proliferation-related signaling and balanced by the cytokines in CLL.  相似文献   

8.
Neutrophils are an essential component of the innate immune response, but their prolonged activation can lead to chronic inflammation. Consequently, neutrophil homeostasis is tightly regulated through balance between granulopoiesis and clearance of dying cells. The bone marrow is both a site of neutrophil production and the place they return to and die. Myeloproliferative neoplasms (MPN) are clonal hematopoietic disorders characterized by the mutations in three types of molecular markers, with emphasis on Janus kinase 2 gene mutation (JAK2V617F). The MPN bone marrow stem cell niche is a site of chronic inflammation, with commonly increased cells of myeloid lineage, including neutrophils. The MPN neutrophils are characterized by the upregulation of JAK target genes. Additionally, MPN neutrophils display malignant nature, they are in a state of activation, and with deregulated apoptotic machinery. In other words, neutrophils deserve to be placed in the midst of major events in MPN. Our crucial interest in this review is better understanding of how neutrophils die in MPN mirrored by defects in apoptosis and to what possible extent they can contribute to MPN pathophysiology. We tend to expect that reduced neutrophil apoptosis will establish a pathogenic link to chronic inflammation in MPN.  相似文献   

9.
Prostate cancer is a major cause of cancer-related mortality in men in developed countries. The compound, 4-acetylantroquinonol B (4AAQB), is isolated from Antrodia cinnamomea (commonly known as Niu-Chang-Chih), which has been shown to inhibit cancer growth. However, the anticancer activity of 4AAQB has not previously been examined in prostate cancer. This study aimed to investigate the effect of 4AAQB on cancer and angiogenesis, as well as to explore its mechanism of action. Human prostate cancer cells (PC3) and human umbilical vein endothelial cells (HUVEC) were used in cell viability, cell migration, and cell cycle functional assays to evaluate the anticancer and antiangiogenic efficacy of 4AAQB in vitro. The effects of 4AAQB in vivo were determined using xenograft and angiogenesis models. The signaling events downstream of 4AAQB were also examined. The 4AAQB compound inhibited PC3 cell growth and migration, and reduced in vivo cancer growth, as shown in a subcutaneous xenograft model. Furthermore, 4AAQB inhibited HUVEC migration, tube formation, and aortic ring sprouting; it also reduced neovascularization in a Matrigel implant angiogenesis assay in vivo. The 4AAQB compound also decreased metastasis in the PC3 prostate cancer model in vivo. Serum or vascular endothelial growth factor (VEGF)-induced VEGF receptor 2 (VEGFR2), phosphoinositide 3-kinase (PI3K)/Ak strain transforming (Akt), and extracellular signal-regulated kinase ½ (ERK ½) phosphorylation were attenuated by 4AAQB in both PC3 and HUVEC. In conclusion, 4AAQB is a potential candidate for prostate cancer therapy.  相似文献   

10.
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.  相似文献   

11.
Successful conception requires the synchrony of multiple systems and organs. Dysregulation of stromal cell–immune cell interactions has been proposed to be associated with recurrent spontaneous abortion. However, the mechanism of this regulation has not been well elucidated. N6-methyladenosine is one of the most common RNA modifications, and is involved in many pathological processes. Our group has demonstrated that abnormal patterns of m6A modification inhibit trophoblast invasion and contribute to adverse pregnancy outcomes. The association between m6A regulators and stromal cell–immune cell interactions is unclear. We obtained RNA-seq profiles from a GEO dataset and identified differentially expressed m6A regulators between healthy controls and patients with a recurrent spontaneous abortion history. ROC curves, functional enrichment and subclassification analysis were applied to elucidate the role of m6A regulators in pregnancy. We verified the expression of m6A regulators and constructed an overexpression cell line in a coculture system to reveal ALKBH5 function in stromal cell–macrophage interactions. We identified 11 differentially expressed m6A regulators between healthy controls and patients with a recurrent spontaneous abortion history. Then, we identified the correlation between “eraser” genes and “writer” genes. We tested the predictive abilities of the 11 m6A regulators based on another dataset and verified their expression in primary human endometrial stromal cells. We then subclassified three distinct patterns using the 11 genes and visualized genes related to immune infiltration and macrophage function in each cluster. ALKBH5 was proven to be correlated with recurrent spontaneous abortion. To verify the role of ALKBH5 in RSA, we constructed an ALKBH5-overexpression cell line. Finally, we cocultured the overexpression cell line with THP-1 cells. A decrease in M2 differentiation was observed, and this bias could be attributed to the hyposecretion of VEGF in stromal cells. N6-methyladenosine regulators play a pivotal role in stromal cell–immune cell interactions at the maternal–fetal interface. Overexpression of the m6A “eraser” gene ALKBH5 in stromal cells resulted in the hyposecretion of VEGF. Dysregulation of VEGF might impair macrophage recruitment and M2 differentiation, which could be the potential cause of recurrent spontaneous abortion.  相似文献   

12.
The vascular endothelial growth factor (VEGF) family, the crucial regulator of angiogenesis, lymphangiogenesis, lipid metabolism and inflammation, is involved in the development of atherosclerosis and further CVDs (cardiovascular diseases). This review discusses the general regulation and functions of VEGFs, their role in lipid metabolism and atherosclerosis development and progression. These functions present the great potential of applying the VEGF family as a target in the treatment of atherosclerosis and related CVDs. In addition, we discuss several modern anti-atherosclerosis VEGFs-targeted experimental procedures, drugs and natural compounds, which could significantly improve the efficiency of atherosclerosis and related CVDs’ treatment.  相似文献   

13.
14.
Increased soluble endoglin (sENG) has been observed in human brain arteriovenous malformations (bAVMs). In addition, the overexpression of sENG in concurrence with vascular endothelial growth factor (VEGF)-A has been shown to induce dysplastic vessel formation in mouse brains. However, the underlying mechanism of sENG-induced vascular malformations is not clear. The evidence suggests the role of sENG as a pro-inflammatory modulator, and increased microglial accumulation and inflammation have been observed in bAVMs. Therefore, we hypothesized that microglia mediate sENG-induced inflammation and endothelial cell (EC) dysfunction in bAVMs. In this study, we confirmed that the presence of sENG along with VEGF-A overexpression induced dysplastic vessel formation. Remarkably, we observed increased microglial activation around dysplastic vessels with the expression of NLRP3, an inflammasome marker. We found that sENG increased the gene expression of VEGF-A, pro-inflammatory cytokines/inflammasome mediators (TNF-α, IL-6, NLRP3, ASC, Caspase-1, and IL-1β), and proteolytic enzyme (MMP-9) in BV2 microglia. The conditioned media from sENG-treated BV2 (BV2-sENG-CM) significantly increased levels of angiogenic factors (Notch-1 and TGFβ) and pERK1/2 in ECs but it decreased the level of IL-17RD, an anti-angiogenic mediator. Finally, the BV2-sENG-CM significantly increased EC migration and tube formation. Together, our study demonstrates that sENG provokes microglia to express angiogenic/inflammatory molecules which may be involved in EC dysfunction. Our study corroborates the contribution of microglia to the pathology of sENG-associated vascular malformations.  相似文献   

15.
Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they generally exhibit a limited effect on the disease outcome. The development of alternative therapeutic approaches towards ischemic disease treatment, especially of decompensated forms, is therefore relevant. Therapeutic angiogenesis, stimulated by various cytokines, chemokines, and growth factors, provides the possibility of restoring functional blood flow in ischemic tissues, thereby ensuring the regeneration of the damaged area. In the current study, based on the clinically approved plasmid vector pVax1, multigenic constructs were developed encoding vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF2), and the DsRed fluorescent protein, integrated via picornaviruses’ furin-2A peptide sequences. In vitro experiments demonstrated that genetically modified cells with engineered plasmid constructs expressed the target proteins. Overexpression of VEGF and FGF2 resulted in increased levels of the recombinant proteins. Concomitantly, these did not lead to a significant shift in the general secretory profile of modified HEK293T cells. Simultaneously, the secretome of genetically modified cells showed significant stimulating effects on the formation of capillary-like structures by HUVEC (endothelial cells) in vitro. Our results revealed that when the multicistronic multigene vectors encoding 2A peptide sequences are created, transient transgene co-expression is ensured. The results obtained indicated the mutual synergistic effects of the growth factors VEGF and FGF2 on the proliferation of endothelial cells in vitro. Thus, recombinant multicistronic multigenic constructs might serve as a promising approach for establishing safe and effective systems to treat ischemic diseases.  相似文献   

16.
The differential diagnosis between adrenocortical adenomas (ACAs) and adrenocortical carcinomas (ACCs) relies on unspecific clinical, imaging and histological features, and, so far, no single molecular biomarker has proved to improve diagnostic accuracy. Similarly, prognostic factors have an insufficient capacity to predict the heterogeneity of ACC clinical outcomes, which consequently lead to inadequate treatment strategies. Angiogenesis is a biological process regulated by multiple signaling pathways, including VEGF and the Ang–Tie pathway. Many studies have stressed the importance of angiogenesis in cancer development and metastasis. In the present study, we evaluated the expression of VEGF and Ang–Tie pathway mediators in adrenocortical tumors (ACTs), with the ultimate goal of assessing whether these molecules could be useful biomarkers to improve diagnostic accuracy and/or prognosis prediction in ACC. The expression of the proteins involved in angiogenesis, namely CD34, VEGF, VEGF-R2, Ang1, Ang2, Tie1 and Tie2, was assessed by immunohistochemistry in ACC (n = 22), ACA with Cushing syndrome (n = 8) and non-functioning ACA (n = 13). ACC presented a significantly higher Ang1 and Ang2 expression when compared to ACA. Tie1 expression was higher in ACC with venous invasion and in patients with shorter overall survival. In conclusion, although none of these biomarkers showed to be useful for ACT diagnosis, the Ang–Tie pathway is active in ACT and may play a role in regulating ACT angiogenesis.  相似文献   

17.
(1) Background: Patients with acute ischaemic stroke (AIS) are at high risk for stroke-associated infections (SAIs). We hypothesised that increased concentrations of systemic inflammation markers predict SAIs and unfavourable outcomes; (2) Methods: In 223 patients with AIS, blood samples were taken at ≤24 h, 3 d and 7d after a stroke, to determine IL-6, IL-10, CRP and LBP. The outcome was assessed using the modified Rankin Scale at 90 d. Patients were thoroughly examined regarding the development of SAIs; (3) Results: 47 patients developed SAIs, including 15 lower respiratory tract infections (LRTIs). IL-6 and LBP at 24 h differed, between patients with and without SAIs (IL-6: p < 0.001; LBP: p = 0.042). However, these associations could not be confirmed after adjustment for age, white blood cell count, reduced consciousness and NIHSS. When considering the subgroup of LRTIs, in patients who presented early (≤12 h after stroke, n = 139), IL-6 was independently associated with LRTIs (OR: 1.073, 95% CI: 1.002–1.148). The ROC-analysis for prediction of LRTIs showed an AUC of 0.918 for the combination of IL-6 and clinical factors; (4) Conclusions: Blood biomarkers were not predictive for total SAIs. At early stages, IL-6 was independently associated with outcome-relevant LRTIs. Further studies need to clarify the use of biochemical markers to identify patients prone to SAIs.  相似文献   

18.
Angiogenesis is one of the main processes that coordinate the biological events leading to a successful pregnancy, and its imbalance characterizes several pregnancy-related diseases, including preeclampsia. Intracellular interactions via extracellular vesicles (EVs) contribute to pregnancy’s physiology and pathophysiology, and to the fetal–maternal interaction. The present review outlines the implications of EV-mediated crosstalk in the angiogenic process in healthy pregnancy and its dysregulation in preeclampsia. In particular, the effect of EVs derived from gestational tissues in pro and anti-angiogenic processes in the physiological and pathological setting is described. Moreover, the application of EVs from placental stem cells in the clinical setting is reported.  相似文献   

19.
Interleukin (IL)-22 is a potent mediator of inflammatory responses. The IL-22 receptor consists of the IL-22Rα and IL-10Rβ subunits. Previous studies have shown that IL-22Rα expression is restricted to non-hematopoietic cells in the skin, pancreas, intestine, liver, lung, and kidney. Although IL-22 is involved in the development of inflammatory responses, there have been no reports of its role in brain inflammation. Here, we used RT-PCR, Western blotting, flow cytometry, immunohistochemical, and microarray analyses to examine the role of IL-22 and expression of IL-22Rα in the brain, using the microglial cell line, hippocampal neuronal cell line, and inflamed mouse brain tissue. Treatment of BV2 and HT22 cells with recombinant IL-22 increased the expression levels of the pro-inflammatory cytokines IL-6 and TNF-α, as well as cyclooxygenase (COX)-2 and prostaglandin E2. We also found that the JNK and STAT3 signaling pathways play an important role in IL-22-mediated increases in inflammatory mediators. Microarray analyses revealed upregulated expression of inflammation-related genes in IL-22-treated HT22 cells. Finally, we found that IL-22Rα is spontaneously expressed in the brain and is upregulated in inflamed mouse brain. Overall, our results demonstrate that interaction of IL-22 with IL-22Rα plays a role in the development of inflammatory responses in the brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号