首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of hybrid fillers on the electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of polyamide 6 (PA6)/polypropylene (PP) immiscible polymer blends were investigated. Carbon black (CB) and steam exploded sisal fiber (SF) were used as fillers. CB was coated on the surface of SF, and this was exploded by water steam to form carbon black modified sisal fiber (CBMSF). CB/SF/PA6/PP composites were prepared by melt compounding, and its electromagnetic SE was tested in low‐frequency and high‐frequency ranges. We observed that SF greatly contributed to the effective decrease in the percolation threshold of CB in the PA6/PP matrix and adsorbed carbon particles to form a conductive network. Furthermore, an appropriate CB/SF ratio was important for achieving the best shielding performance. The results indicate that CBMSF was suitable for use as electronic conductive fillers and the CB/SF/PA6/PP composites could be used for the purpose of EMI shielding. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42801.  相似文献   

2.
Composites based on isotactic polypropylene (PP) and sisal fiber (SF) were prepared by melt mixing and injection molding. The melt mixing characteristics, thermal properties, morphology, crystalline structure, and mechanical behavior of the PP/SF composites were systematically investigated. The results show that the PP/SF composites can be melt mixed and injection molded under similar conditions as the PP homo‐polymer. For the composites with low sisal fiber content, the fibers act as sites for the nucleation of PP spherulites, and accelerate the crystallization rate and enhance the degree of crystallinity of PP. On the other hand, when the sisal fiber content is high, the fibers hinder the molecular chain motion of PP, and retard the crystallization. The inclusion of sisal fiber induces the formation of β‐form PP crystals in the PP/SF composites and produces little change in the inter‐planar spacing corresponding to the various diffraction peaks of PP. The apparent crystal size as indicated by the several diffraction peaks such as L(110)α, L(040)α, L(130)α and L(300)β of the α and β‐form crystals tend to increase in the PP/SF composites considerably. These results lead to the increase in the melting temperature of PP. Moreover, the stiffness of the PP/SF composites is improved by the addition of sisal fibers, but their tensile strength decreases because of the poor interfacial bonding. The PP/SF composites are toughened by the sisal fibers due to the formation of β‐form PP crystals and the pull‐out of sisal fibers from the PP matrix, both factors retard crack growth.  相似文献   

3.
The morphological, electrical, and thermal properties of polyurethane foam (PUF)/single conductive filler composites and PUF/hybrid conductive filler composites were investigated. For the PUF/single conductive filler composites, the PUF/nickel‐coated carbon fiber (NCCF) composite showed higher electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) than did the PUF/multiwall carbon nanotube (MWCNT) and PUF/graphite composites; therefore, NCCF is the most effective filler among those tested in this study. For the PUF/hybrid conductive fillers PUF/NCCF (3.0 php)/MWCNT (3.0 php) composites, the values of electrical conductivity and EMI SE were determined to be 0.171 S/cm and 24.7 dB (decibel), respectively, which were the highest among the fillers investigated in this study. NCCF and MWCNT were the most effective primary and secondary fillers, and they had a synergistic effect on the electrical conductivity and EMI SE of the PUF/NCCF/MWCNT composites. From the results of thermal conductivity and cell size of the PUF/conductive filler composites, it is suggested that a reduction in cell size lowers the thermal conductivity of the PUF/conductive filler composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44373.  相似文献   

4.
Composites, comprised of acrylonitrile styrene acrylate copolymer (ASA)/graphite (GR) with high electromagnetic interference shielding effectiveness (EMI SE), were fabricated by the introduction of carbon black (CB). The effects of CB on properties such as EMI SE, morphology, heat resistance, rheological and mechanical performance of the composites were characterized using a scanning electron microscope (SEM), rotational rheometer, electromagnetic shielding measuring instruments. The graphite and carbon black exhibited positive synergistic action, which promoted the complete formation of conductive networks in ASA matrix. The EMI SE and electrical conductivity of the ASA/GR/CB composites increased with higher CB loadings. In the frequency range of 30–3000 MHz, the maximum EMI SE of ASA composites with 50 % fillers reached 40 dB, but with 40 % fillers this property reached its maximum value of 50 dB. The flexural strength of ASA/GR/CB composites started to decline as CB loading exceeded 5 %. The heat resistance of the composites was improved due to the addition of CB. In this respect, the vicar softening temperature (VST) of the composites with 40 % fillers increased from 115.1 to 132.7 °C, and the VST of the composites with 50 % fillers was elevated from 125.4 to 138.9 °C.  相似文献   

5.
A two‐step process was used to obtain long sisal fiber‐polypropylene (SF/PP)–reinforced thermoplastic composites, using maleic anhydride grafted polypropylene (MA‐g‐PP) as a compatibilizer. At a first stage, modified polypropylenes (mPP) were used for an extrusion impregnation process, for the preparation of composite pellets containing about 70 wt% of SF. SF/mPP pellets with a large aspect ratio were prepared by continuous extrusion impregnation of a continuous SF yarn, using a single screw extruder and an adequate impregnation die. The mPP used were MA‐g‐PP and regular polypropylene (PP), modified by reaction with different amounts of an organic peroxide. The composite pellets were thus dry blended with regular PP pellets in an injection machine hopper, and injection molded to obtain composite tensile specimens with a minimum quantity of modified polypropylene, minimum fiber breakage and thermal degradation, and excellent mechanical properties. It is shown that the fiber breakage is reduced to a minimum, even for recycled composites, due to the presence of the low‐viscosity polymer layer wetting the SF fibers. The bulk composite effective viscosity and the fiber breakage extent and thermal degradation during the injection‐molding step are found to be closely related. Blending with much less expensive mPP at the impregnation stage optimizes the amount of expensive MA‐g‐PP. POLYM. ENG. SCI., 45:613–621, 2005. © 2005 Society of Plastics Engineers  相似文献   

6.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

7.
Polypropylene/carbon nanotube/exfoliated graphite nanoplatelet (PP/CNT/xGnP) composites have been fabricated to evaluate their electromagnetic interference shielding effectiveness (EMI SE) and soundproofing. An EMI SE of 36.5 dB at 1250 MHz was measured for the 80/10/10 wt % PP/CNT/xGnP composite; its sound transmission loss was more than 5 dB higher than that for pure PP at low frequencies (520–640 Hz). These results indicate simultaneous EMI SE and soundproofing. Transmission electron microscopy was used to study the microstructure and to probe synergetic effects between the CNTs and xGnPs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3947–3951, 2013  相似文献   

8.
Sisal fiber (SF) surface modification was carried out by grafting with methyl methacrylate (MMA) using cerium and ammonium nitrate as initiator. The effects of reaction time, monomer, and initiator concentration on the grafting parameters were systematically investigated. The results showed that MMA was successfully grafted onto the sisal fiber surface. The PMMA‐grafted sisal fibers were melt blended with polypropylene (PP) and then injection molded. The PP/SF composites were characterized by means of thermal analysis, mechanical testing, wide‐angle X‐ray diffraction, and SEM examination. PMMA grafted onto the surface of SF enhanced the intermolecular interaction between the reinforcing SF and PP matrix, improved the dispersion of SF in the PP matrix, and promoted the formation of β‐crystalline PP. These enhanced the thermal stability and mechanical properties of PP/SF composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1055–1064, 2003  相似文献   

9.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

10.
We report the preparation of polybutylene succinate (PBS)/sisal‐fiber (SF) composites. The effects of mixing temperature and of steam‐explosion pretreatment of SFs on the mechanical properties of the composites were investigated, and the mechanism of action was studied by infrared spectroscopy, scanning electron microscopy, and x‐ray photoelectron spectroscopy. The results indicate that as the mixing temperature increases, PBS flows better and can graft onto steam‐exploded sisal fiber (SESF), the interfacial bond property between SESF and PBS improves, and the mechanical properties of the composites improve. The mechanical properties of the composites are maximal for a mixing temperature of 200°C. The results also demonstrate that the cellulose content and the specific fiber surface area can be increased by steam‐explosion pretreatment, so that the mechanical properties of the composites can be improved. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

11.
The friction‐resistant sisal fiber/nano‐silica phenol formaldehyde resin composites were prepared through compression molding. To enhance the bonding between the sisal fiber (SF) and polymer matrix, SF were treated with different surface modifiers. The worn surfaces of composites were observed by scanning electron microscope (SEM). The result shows that the matrix of nano‐silica phenol formaldehyde resin can relieve the heat fade of the friction materials. Meanwhile sisal fibers treated with borax have effectively improved the friction and wear properties of the composites when the fiber content was 15%. POLYM. COMPOS. 36:433–438, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
采用聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、碳纳米管(CNTs)制备了具有纤维结构的微孔发泡复合材料,借助层叠器内部流道的变化,实现了造粒阶段PET的连续化原位成纤.通过差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、矢量网络分析仪和万能试验机对复合材料的结晶性能、表观形态、电磁屏蔽效能(EMI SE)和拉...  相似文献   

13.
何和智  周卉青  何熹  姚衍东 《塑料工业》2012,40(7):72-74,113
采用密炼方式制备石墨包覆爆破剑麻填充聚丙烯(PP)电磁屏蔽材料,研究了该材料的加工性能,具体探讨了不同含量的石墨/剑麻的PP电磁屏蔽材料的力学性能、结晶性能以及毛细管流变性能的变化。结果表明,复合材料的拉伸强度随着填充物含量的增加而降低至23 MPa后基本保持不变;质量分数30%的石墨/剑麻填充物的弯曲性能最好,弯曲模量随着填充物含量的增大而增大;复合材料的结晶和熔融温度随着填充物含量的增大而升高;复合材料的流动性随着填充物含量的增加而变差。  相似文献   

14.
Phenol formaldehyde resin (PF) reinforced with short sisal fibers (SF) were obtained by two methods, direct‐mixing and polymerization filling. Impact and bending properties of resulting composites were compared. Under the same compression molding conditions, polymerization filled composites showed better mechanical properties than those of direct‐mixed composites. The influences of fiber modifications on the mechanical properties of SF/PF in‐situ (polymerization filled) composites have been investigated. Treated‐SF‐reinforced composites have better mechanical properties than those of untreated‐SF‐reinforced composites. The effects of SF on water absorption tendencies of SF/PF composites have also been studied. In addition, sisal/glass (SF/GF) hybrid PF composites of alkali‐treated SF were prepared. Scanning electron microscopic studies were carried out to study the fiber‐matrix adhesion. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Carbon nanotube reinforced carbon fiber/pyrolytic carbon composites were fabricated by precursor infiltration and pyrolysis method and their electromagnetic interference shielding effectiveness (EMI SE) was investigated over the frequency range of 8.2–12.4 GHz (X-band). Carbon nanotubes (CNTs) were in situ formed through catalyzing hydrocarbon gases evaporating out of phenolic resin with nano-scaled Ni particles. The content of CNTs increased with the increase of Ni loadings (0.00, 0.50, 0.75 and 1.25 wt.%) in phenolic resin. Thermal gravimetrical analysis results showed that the carbon yield of phenolic resin increased with the addition of Ni catalyst. With the formation of CNTs, the EMI SE increased from 28.3 to 75.2 dB in X-band. The composite containing 5.0 wt.% CNTs showed an SE higher than 70 dB in the whole X-band.  相似文献   

16.
Composites of polypropylene (PP) and non‐treated sisal fiber (SF) were prepared in a non‐conventional two‐step process that offers significant advantages. Maleic anhydride–grafted polypropylene (MA‐g‐PP) was used as a coupling agent, to improve adhesion between the polar sisal fiber and the non‐polar polypropylene continuous matrix. At a first step, SF/MA‐g‐PP pellets with large aspect ratio and very high fiber content are prepared by extrusion impregnation and coating of a continuous SF yarn, followed by cooling and cutting. The composite pellets are thus dry blended with regular PP pellets in the injection machine hopper, and injected to obtain composite tensile specimens with a minimum quantity of expensive MA‐g‐PP, minimum fiber breakage and thermal degradation, and excellent mechanical properties. The SF/MA‐g‐PP pellets have a fiber content of 70% (w/w). The composite tensile specimens have final fiber contents ranging from about 3.5% to 24.5% (w/w). The PP tensile strength rises by about 44%. The tensile modulus increases by 126%, and the heat distortion temperature (HDT) is raised by about 35 K. FT‐IR spectroscopy and SEM micrographic observation show that the MA‐g‐PP is covalently bonded to SF through esterification. Besides the improvement in mechanical and thermal properties, costs are reduced because of the lower content of very expensive MA‐g‐PP, and the use of a single‐screw extruder at high production rates. Polym. Eng. Sci. 44:1766–1772, 2004. © 2004 Society of Plastics Engineers.  相似文献   

17.
Polymers filled with conducting fibers to prevent electromagnetic interference (EMI) performance have recently received great attention due to the requirements of 3C (computer, communication, and consumer electronics) products. In the present article, the effect of fiber content and processing parameters, including melt temperature, mold temperature, and injection velocity, on the electromagnetic interference shielding effectiveness (SE) in injection molded ABS polymer composites filled with conductive stainless steel fiber (SSF) was investigated. The influence of fiber orientation and distribution resulting from fiber content and molding conditions on EMI performance was also examined. It was found from measured results that fiber content plays a significant role in influencing part EMI SE performance. SE value can reach the highest values of approximately 40 dB and 60 dB at 1000 MHz frequency for fiber content 7 wt % and 14 wt %, respectively, under the best choice of molding conditions. Higher melt and mold temperature would increase shielding effectiveness due to a more uniform and random fiber orientation. However, higher injection velocity leading to highly‐orientated and less uniform distribution of fiber reduces shielding effectiveness. Among all molding parameters, melt temperature affects SE performance most significantly. Its influence slightly decreases as fiber content increases. Injection speed plays a secondary importance in affecting SE values, and its influence increases as fiber content increases. Upon examination of fiber distribution via optical microscope and subsequent image analysis, it was found that the fiber becomes more densely and random distributed toward the last melt‐filled region, whereas fiber exhibits less concentration around the middle way of the flow path. This can be attributed to the combined effects of fountain flow, frozen layer thickness, and gapwise melt front velocity. The results indicate that molding conditions, instead of fiber content alone, are very important on the SE performance for injection molded SSF filled ABS composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1072–1080, 2005  相似文献   

18.
This work demonstrates the fabrications and characterizations of polyaniline (PAni) composites containing single-walled carbon nanotubes (SWCNTs), graphite nanosheets (GNS), or hybrid fillers (SWCNTs/GNS). The characterization of microstructure, examination of fracture surface morphologies, and measurement of electric conductivity and electromagnetic interference shielding efficiency (EMI SE) were performed. It was found that both the electric conductivity and the EMI SE increase with filler loading, and the nanocomposites filled with 1.0 wt.% SWCNTs/GNS possessed the highest electric conductivity of 16.2 S/cm and total EMI SE of 27.0 dB. The experimental results also show that absorption is the primary mechanism of EMI SE for all of the loadings and fillers.  相似文献   

19.
Carbon black, short carbon fiber (SCF), and multiwall carbon nano‐tube (MWNT)‐filled conductive composites were prepared from ethylene vinyl acetate copolymer. The dielectric property and electromagnetic interference (EMI) shielding of carbon black, MWNT, and SCF‐filled composites were studied with different filler loadings. The dielectric constant and loss of filled polymer composites is due to the formation of interfacial polarization in the polymer matrix. It was found that the dielectric constant, dielectric loss, and EMI shielding of filled composites depends on amount and type of filler loading. The results of different experiments have been discussed in the light of break down and formation of continuous conductive network in polymer matrix. The results indicate that these composites can be used as effective EMI shielding materials. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers.  相似文献   

20.
Pithecellobium Clypearia Benth herbal residues (PHRs) were pretreated by steam explosion to produce PHR fibers (PHRFs) that were subsequently co‐steam explosion modified with various molecular weight of polyvinyl alcohol (PVA). High value use of PHRs was realized when the unmodified PHRFs and modified PHRFs were used to reinforce polypropylene (PP). The component and structural changes of PHRFs, as well as the mechanism of PVA action during co‐steam explosion, were analyzed. The effect of the PVA co‐steam explosion on the mechanical properties, water absorption and interfacial properties of PHRF/PP composites were also studied as a function of PVA molecular weight. Relative to unmodified‐PHRF/PP composites, the mechanical and interfacial properties were improved, while water absorption was almost unchanged, for composites containing PHRFs modified by PVA co‐steam explosion. This was because PVA had been grafted on to the PHRFs during the co‐steam explosion. POLYM. COMPOS., 37:915–924, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号