首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic–inorganic hybrid poly(styrene‐co‐butyl acrylate)/organically modified montmorillonite (PSBA/organo‐MMT) latex particles have been prepared by in situ emulsion polymerization. The effects of modifier variety and the level of organo‐MMT have been investigated on the basis of the characteristics and mechanical properties of the resulting hybrid emulsion polymers. Although the more hydrophilic intercalated organic modifiers increased the latex particle size, the hydrophobic ones decreased the particle size. A more heterogeneous copolymer chain intercalation was seen by widespread XRD reflection as the organo‐MMT (organoclay) level increases. The tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to determine the dispersion state of organoclay particles inside the nanocomposite copolymer films. Dynamic mechanical thermal analysis (DMTA) showed that adding the organoclay to the copolymer decreased the maximum loss tangent (tanδ) value and caused the shift to a lower temperature. Interestingly, the incorporation of organoclay decreased the glass storage modulus of the copolymer, while increased the rubbery storage modulus to some extent. In addition, a standard indenter for the nanoscratching of copolymer nanocomposite films was used under low applied loads of 150 and 250 μN. The nanoscratch results showed that incorporation of a 3 wt % hydrophobic organoclay, e.g., Closite15A, in the copolymer matrix enhanced considerably the near‐surface hardness and grooving resistance of the nanocomposite film at room temperature. In fact, copolymer nanocomposite films with higher near‐surface hardness and tanδ curve broadening exhibited more nanoscratch resistance through a specific variety of viscoelastic deformation, which did not create a bigger groove. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
In this work, poly(acrylamide‐co‐acrylic acid)/silica [poly(AM‐co‐AA)/SiO2] microspheres were prepared by inverse phase suspension polymerization in the presence of γ‐3‐(trimethoxysilyl) propyl methacrylate (or 3‐methacryloxypropyltrimethoxysilane) modified SiO2. The effects of SiO2 nanoparticles on tuning morphology and properties of the nanocomposite microspheres were studied. Plugging ability and oil displacement performance were also systematically investigated by single‐ and double‐tube sand pack models. The results showed that SiO2 nanoparticles can effectively adjust surface smoothness, swelling behavior, and thermal stability of the nanocomposite microspheres. Compared with pure copolymer microspheres, these nanocomposite microspheres also displayed better salt tolerance and shear resistance. Such multifunctional nanocomposite microspheres can provide effective plugging in the high‐permeability channels and can also achieve deep profile control. The highest plugging rate can be 86.11% and the oil recovery for low‐permeability tube was enhanced by 19.69%. This research will provide a candidate material for the further enhanced oil recovery (EOR) research and supply the theoretical support for profile control system in field application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45502.  相似文献   

3.
In this study, first polyindole (PIN) was synthesized using FeCl3 as an oxidizing agent. Then, an organo‐montmorillonite (O‐MMT) was prepared from virgin montmorillonite (MMT) by cetyltrimethylammonium bromide (CTAB) quaternary ammonium salt. Further, PIN/O‐MMT conducting nanocomposite was prepared with 18% O‐MMT content. The samples of PIN, MMT, O‐MMT, and PIN/O‐MMT nanocomposite were characterized by FTIR spectroscopy, thermogravimetric analysis (TGA), X‐ray diffraction (XRD), elemental analysis, conductivity, magnetic susceptibility, density, particle size measurements, and scanning electron microscopy (SEM) method. Characterization results showed a successfully prepared PIN/O‐MMT nanocomposite having both intercalated and exfoliated structures. A series of concentrations (5–25%, m/m) were prepared from those above‐mentioned materials in silicone oil (SO) and their sedimentation stabilities were determined. The suspensions were subjected to an external electric field strength and electrorheological (ER) activity was observed. The effects of dispersed particle concentration, shear rate, external electric field strength, frequency, and temperature onto ER activities of these suspensions were investigated. Creep tests were applied to all the four suspensions and recoverable viscoelastic deformations observed. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

4.
Functional copolymer/organo‐silicate [N,N′‐dimethyldodecyl ammonium cation surface modified montmorillonite (MMT)] layered nanocomposites have been synthesized by interlamellar complex‐radical copolymerization of preintercalated maleic anhydride (MA)/ organo‐MMT complex as a ‘nano‐reactor’ with n‐butyl methacrylate (BMA) as an internal plasticization comonomer in the presence of radical initiator. Synthesized copolymers and their nanocomposites were investigated by dynamic mechanic analysis, X‐ray diffraction, SEM, and TEM methods. It was found that nanocomposite dynamic mechanical properties strongly depend on the force of interfacial MA … organo‐MMT complex formation and the amount of flexible n‐butyl ester linkages. An increase in both of these parameters leads to enhanced intercalation and exfoliation in situ processes of copolymer chains and the formation of hybrid nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Poly(butyl acrylate‐co‐methyl methacrylate) (BA‐co‐MMA) nanocomposite latexes were synthesized in the presence of sodium montmorillonite (Na‐MMT) and cellulose nanocrystal (CNC) as fillers. Nanocomposite preparation with 3 wt% Na‐MMT based upon the total monomer amount was conducted by semi‐batch emulsion polymerization. Furthermore, direct blending of neat copolymer latex with Na‐MMT was performed for comparison. CNC/BA‐co‐MMA nanocomposites were obtained via blending process with varying CNC content (1, 2, and 3 wt %). Good dispersion of both Na‐MMT and CNC within the copolymer matrix was achieved as demonstrated by X‐ray diffraction and transmission electron microscope. Particle size of the nanocomposite latexes was around 120 nm. Thermal, mechanical, and barrier properties of the copolymer showed great improvement with the addition of both Na‐MMT and CNC. CNC nanocomposites displayed enhanced properties with increasing CNC level. Tensile strength of copolymer latex with 3 wt% CNC reached 262.5% of the pristine latex, while tensile strength of Na‐MMT nanocomposite at the same content was 187.5% of the pristine latex. POLYM. ENG. SCI., 55:2922–2928, 2015. © 2015 Society of Plastics Engineers  相似文献   

6.
An inverse suspension polymerization method for the preparation of thermoresponsive hydrogel microspheres based on N‐isopropylacrylamide was described in this article. The polymerization reaction was carried out at 200 rpm stirring rate and the microspheres obtained were in the size range of 71–500 μm in the swollen states. The particles were sieved by using ASTM sieves. The selected fraction (180–250 μm) of poly(N‐isopropylacrylamide) (PNIPAAm) microspheres was used for radiation‐induced modification with itaconic acid (IA) to obtain PNIPAAm/poly(itaconic acid) graft copolymer. Viagra and lidocaine were used as model drugs for the investigation of controlled‐release behavior of the microspheres. Incorporation of IA graft chains onto microspheres enhanced significantly the uptake of both drugs and further controlled release at specific pH values. The release studies showed that some of the basic parameters affecting the drug‐loading and ‐release behavior of the microspheres were pH, temperature, particle size, and chemical nature of drug. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1115–1124, 2005  相似文献   

7.
The application of a density gradient column (DGC) method using sodium polytungstate (SPT) solutions as the medium was investigated for determining the encapsulation efficiency of 11–30% pigment volume concentration (PVC)) latex particles prepared by the miniemulsification process. The encapsulation efficiencies for 11, 20, and 30% PVCs were found to be 100% of the TiO2 encapsulated inside 86.3, 98, and 98.9% of the styrene/n‐butyl acrylate copolymer, respectively. The copolymer not participating in the encapsulation (free copolymer) was found in the 1.04 g/mL density layer of the DGC. Particle size analysis by DLS (dynamic light scattering) showed that the encapsulated particle size increased with increasing density. Thus, the number of TiO2 particles (primary particles) inside each encapsulated particle increased to accommodate both the increased size and density. The results obtained by DLS for each DGC layer of the 30% PVC system were confirmed qualitatively by TEM in terms of the increasing encapsulated particle size and broadening of the size distribution as the density increased in the DGC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4517–4525, 2006  相似文献   

8.
The purpose of this study was to synthesize a novel wound dressing containing bFGF‐loaded microspheres for promoting healing and tissue regeneration. Gelatin was chosen as the underlying layer and was prepared in porous sponge. As the external layer, elastomeric polyurethane membranes were used. bFGF was loaded in microspheres to achieve prolonged release for higher efficiency. The microspheres were characterized for particle size, in vitro protein release, and bioactivity. The dressings were tested in in vivo experiments on skin defects created on pigs. At certain intervals, wound areas were measured and tissues from wound areas were biopsied for histological examinations. Average size of the microspheres was 14.36 ± 3.56 μm and the network sponges were characterized with an average pore size of 80–160 μm. Both the release efficiency and the protein bioactivity revealed that bFGF was released in a controlled manner and was biologically active, as assessed by its ability to induce the proliferation of fibroblasts. The rate of wound‐area decrease was much faster and the quality of the newly‐formed dermis was almost as good as the normal skin. The application of this novel bilayer wound dressing provided an optimum healing milieu for the proliferating cells and regenerating tissues. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4772–4781, 2006  相似文献   

9.
Ethyl vinyl acetate (EVA) copolymers are potential materials for biomedical applications due to their exceptional mechanical properties and biocompatibility. As new medical device designs continue to reduce in size, new materials are required that exhibit improved strength and toughness. In this research, EVA nanocomposites containing synthetic montmorillonite (MMT) are being investigated as new biomedical materials with similar flexibility, biocompatibility, and biostability to neat EVA, but with far superior tensile strength and toughness. We show that the pre‐dispersing of the organo‐MMT prior to melt compounding with the EVA matrix can facilitate nanofiller exfoliation and dispersion in the EVA, thereby enabling significant improvement of EVA nanocomposite performance when high organo‐MMT loading (5 wt %) was added. It was observed that the polarity of pre‐dispersing medium influenced the nanofiller's surfactant organization and distribution, organo‐MMT exfoliation, and dispersion in the EVA, and also interphases of the host copolymer. Consequently, changes in morphology have brought noticeable effects on the mechanical and thermal properties of the EVA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43204.  相似文献   

10.
In this article, the morphology, particle size, and plugging properties of crosslinked polyacrylamide (CPAM) microspheres were investigated through optical microscopy, scanning electron microscopy (SEM), nuclear‐pore membrane filtration experiments, a micro‐visual model, sandpack experiments, parallel twin‐tube plugging, and oil displacement experiments. The results revealed that the primary particle sizes of the CPAM microspheres ranged from several hundreds of nanometers to 5 μm; however, after the microspheres were fully swelled in water, their sizes increased by approximately five times of their original sizes. As a CPAM microsphere dispersion system had good dispersibility and deformation capabilities, a 1.2 μm nuclear‐pore membrane as well as the deep part of a sandpack tube could be effectively plugged. Consequently, the flow diversion effect was achieved in the vertical and planar directions. When the CPAM microspheres migrated in porous media, they could displace residual oil on the pole wall and water flow channel to realize the synchronization of profile control and coordination and improve recovery efficiency. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43666.  相似文献   

11.
This article advances the use of an inline optical detector to monitor the disaggregation of the montmorillonite (MMT) clay tactoids during the preparation of polypropylene (PP)/MMT nanocomposites via polymer melt compounding. During the exfoliation of the tactoids their size are reduced below the minimum particle size to produce light extinction and so, the signal of the inline detector reduces as the nanosize composite is formed. The measurement is done at the transient state with the MMT clay added as a pulse with constant weight into the PP extrusion melt flow and followed by the optical detector. The data comes out as the common residence time distribution curves having its maximum intensity related to the tactoids average particle size, keeping all other variables constants. The light extinction was measured for composites with different clays (Cloisite® 15A, 30B, Na+, and Sintered 20A) using the same PP grafted with maleic anhydride compatibilizer. The dissaglomeration/exfoliation efficiency increases as: ‘‘Sintered 20A’’ < ‘‘Na+ clay’’ < ‘‘organo‐modified clay’’ < ‘‘organo‐modified clay + compatibilizer’’. The best result is obtained using Cloisite® 15A and Cloisite® 20A following the expected reduction of the particle size obtained during a nanocomposite melt processing. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

12.
Polylactide (PLA) and a block copolymer, poly‐DL ‐lactide–poly(ethylene glycol) (PELA) were synthesized by bulk ring‐opening polymerization initiated by stannous chloride. A linear DNA molecule, λDNA, was used as the model DNA. PLA, PELA, λDNA‐loaded PLA and PELA microspheres were prepared by the solvent‐extraction method based on the formation of multiple w1/o/w2 emulsion. The particle‐size distribution, surface morphology, and DNA loading characterized the microspheres. The mean diameter of λDNA‐loaded PELA microspheres was proved to be 3.5 μm. The integrity of the λDNA molecules, after preparing the microspheres, was determined by agarose gel electrophoresis. The result suggested that most of the λDNA molecules could retain their integrity after being encapsulated by PELA. The PELA microspheres could also prevent λDNA from being degraded by DNase. The in vitro degradation and release of PLA, PELA, and λDNA‐loaded PELA microspheres were carried out in a pH 7.4 buffer solution at 37°C. Quantitatively, evaluating the molecular weight reduction, the mass loss, the particle‐size changes, and the particle‐size distribution changes also monitored the degree of degradation. The release profile was assessed by measurement of the amount of λDNA present in the release medium at determined intervals. The degradation profiles of the PELA microspheres were quite different from those of the PLA microspheres. The introduction of the hydrophilic poly(ethylene glycol) domain in PLA and the presence of λDNA within the microspheres exhibit the apparent influence on the degradation and release profiles. A biphasic release profile was proved, that is, an initial burst release during the first days, then a gradual release. It was demonstrated that the PELA microspheres could be used potentially as a controlled release‐delivery system for λDNA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2557–2566, 2002  相似文献   

13.
Novel biodegradable aliphatic poly(ester‐urethane)s (PEUs) based on polycaprolactone diol (PCL) and methoxypolyethyleneglycol grafted onto trimethylol propane (mPEG‐g‐TMP) were synthesized by solution polymerization technique and characterized using a variety of techniques. Microspheres ranging in size from 7 to 25 μm were prepared by the solvent evaporation technique and loaded with repaglinide up to 71 to 96%. Increasing molar ratios of mPEG‐g‐TMP propane with respect to polycaprolactone diol gave increase in particle size along with increase in % encapsulation efficiency. Surface morphology and spherical nature of the microspheres were confirmed by scanning electron microscopy (SEM). The release of repaglinide varied, depending upon the molar ratios of mPEG‐g‐TMP moieties with respect to PCL. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
With estane as binder, a new nanocomposite energetic material based on 2,6‐diamino‐3,5‐dinitropyrazine‐1‐oxide (LLM‐105) was successfully prepared by the spray drying method. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and X‐ray diffraction (XRD) was employed to characterize the nanocomposite samples. The impact sensitivity and thermal decomposition properties of the nanocomposites were also measured and analyzed. The results show that the nanocomposite particles are spherical in shape and range from 1 μm to 10 μm in size. The composite is aggregated of many tiny granules with nucleus/shell structure, in which the shell thickness and crystal size of LLM‐105 are about 20 nm and 50–100 nm. The crystal type of LLM‐105 in the nanocomposite is similar to that of raw LLM‐105, however, the diffraction peaks become weaker and wider mainly due to decreasing of particle size. The nanocomposite has lower impact sensitivity and better thermal stability.  相似文献   

15.
Miniemulsion copolymerization of styrene/n‐butyl acrylate was investigated as a means of encapsulating hydrophilic titanium dioxide (TiO2) in a film‐forming polymer. Dispersion studies of the TiO2 were first carried out to determine the choice of stabilizer, its concentration, and the dispersion process conditions for obtaining stable TiO2 particles with minimum particle size. Through screening studies of various functional stabilizers and shelf‐life stability studies at both room and polymerization temperatures, Solsperse 32,000 was selected to give relatively small and stable TiO2 particles at 1 wt % stabilizer and with 20–25 min sonification. The subsequent encapsulation of the dispersed TiO2 particles in styrene/n‐butyl acrylate copolymer (St/BA) via miniemulsion polymerization was carried out and compared with a control study using styrene monomer alone. The lattices resulting from the miniemulsion encapsulation polymerizations were characterized in terms of the encapsulation efficiencies (via density gradient column separations; DGC) and particle size (via dynamic light scattering). Encapsulation efficiencies revealed that complete encapsulation of all of the TiO2 by all of the polymer was not achieved. The maximum encapsulation efficiencies were 79.1% TiO2 inside 61.7% polystyrene and 63.6% TiO2 inside 38.5% St/BA copolymer. As the density of the particles collected from the DGC increased from one layer to another, both the average particle size and the number of the TiO2 particles contained in each latex particle increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3479–3486, 2006  相似文献   

16.
In this article, collagen modified polylactide (CPLA) was synthesized by means of graft modification, and its structure was confirmed by FTIR and FITC‐labeled fluorescence spectra. Subsequently, the performance of CPLA was characterized with hydrophilicity test and degradability test. After that, the aspirin sustained release microspheres of the synthetic copolymers were prepared via the emulsion‐solvent evaporation technique, followed with its measurements of morphology, size, and encapsulation efficiency. Finally, the controlled release properties of the obtained microspheres were investigated. The results showed that the aspirin sustained release microspheres exhibited well‐defined morphology with smooth spherical surface, with average size of 3.990 μm and encapsulation efficiency of 51.83%. Furthermore, compared with aspirin‐loaded PLA microspheres, at the initial 32 h, the drug release was faster for aspirin‐loaded CPLA microspheres favored by its increased hydrophilicity, and then the drug release was slower than that of PLA microspheres because the ? NH2 group on the introduced collagen inhibited acidic autocatalytic degradation. The results suggested that CPLA showed a great potential as particles for drug delivery. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
In this study, exfoliated montmorillonite (MMT) nanolayers were successfully encapsulated in acrylamide/acrylic acid/2‐acrylamido‐2‐methylpropanesulfonic acid (AM/AA/AMPS) terpolymer microspheres by in situ inverse suspension polymerization with the aid of the organic intercalation modification and the lateral groups of terpolymer chains. The introduction of well‐dispersed MMT nanolayers reveals a significant enhancement of the comprehensive properties of these nanocomposite microspheres, such as the viscoelasticity, thermal stability, and plugging ability. Compared with the pure terpolymer, the elastic modulus (G′) of terpolymer/2.0 wt % O‐MMT nanocomposites is 4.30 times higher and the decomposition temperature of these nanocomposites increases by 40 °C. The plugging rate reaches as high as 86.6%. Besides, surface morphology, swelling degree, and wetting behavior can be effectively tuned by varying the content of exfoliated MMT. The wetting angle increases to 82.0 ° which is suitable for modifying the formation channels. These selected nanocomposite microspheres can effectively enter and plug the high permeable microchannels. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44894.  相似文献   

18.
Polymeric microspheres were synthesized by the precipitation copolymerization of methacrylic acid and styrene in supercritical carbon dioxide. Scanning electron microscopy showed that the products were spherical microparticles. The mean diameter of the particles was 0.2–2 μm. The synthesis conditions affecting the particle size and morphology were examined in detail. The well‐distributed copolymer microspheres were applied as low‐temperature improvers for diesel. The results showed excellent performance for high‐paraffin diesel at low temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
A series of micron‐grade polyacrylamide microspheres were prepared by inverse suspension polymerization of acrylamide (AM) and N,N′‐methylene bisacrylamide (MBA) in oil phase, with Span80 and Tween80 as dispersion stabilizers, and ammonium persulfate (APS) as an initiator. The conversion rate and coagulum rate were introduced to optimize the inverse suspension polymerization conditions of micron‐grade polyacrylamide microspheres. The swelling property of polyacrylamide microspheres in aqueous solution and the rheology of polyacrylamide microspheres suspension were characterized. The matching factor was introduced to characterize the matching relationship between the particle size of polyacrylamide microspheres and pore‐throat size of reservoirs. The optimized synthesis results show that the conversion rate is high, and the coagulum rate is low when the mass ratio of Span80 to Tween80 is 3 : 1. The particle size of the polyacrylamide microspheres is controlled by varying the concentration of dispersion stabilizer. The polyacrylamide microspheres show an obvious swelling property, which depends on the concentration of NaCl and temperature. The polyacrylamide microspheres suspension shows different rheological properties at different temperature and shear rate. When the temperature is low, it behaves as pseudoplastic fluid, dilatant fluid and quasi‐newtonian fluid in turn with the increase of shear rate. When the temperature is high, it behaves as dilatant fluid and quasi‐newtonian fluid in turn with the increase of shear rate. The micron‐grade polyacrylamide microspheres prefer to plug sand pack with optimal matching factor. When the matching factor is 1.35–1.55, the polyacrylamide microspheres can be transported into the deep area of sand pack, and the ultimate plugging rate is more than 85%, which indicates that the matching factor is an effective parameter to evaluate the matching relationship between polyacrylamide microspheres and reservoirs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1124‐1130, 2013  相似文献   

20.
Starch and montmorrilonite (MMT) were used as raw materials for synthesizing starch‐graft‐poly[acrylamide (AM)–acrylic acid (AA)]/MMT superabsorbent nanocomposite by graft and intercalation copolymerization reaction of starch, AM, and AA in the presence of organic MMT micropowder in aqueous solution. Major factors affecting water absorbency such as weight ratio of monomers to starch, weight ratio of AM to AA, neutralization degree of AA, amount of crosslinker, initiator, and MMT were investigated. The superabsorbent nanocomposite synthesized under optimal synthesis conditions exhibits absorption of 1120 g H2O/g sample and 128 g H2O/g sample in deionized water and in 0.9 wt % NaCl solution, respectively. IR spectra showed that the graft copolymerization between  OH groups on MMT and monomers took place during the reaction, and that crystal interlayer was pulled open in the superabsorbent nanocomposite. X‐ray diffraction analysis showed that the crystal interlayer of MMT was pulled open to 2.73 nm, and thus formed nanometer exfoliation composite material. Thermogravimetric analysis showed that starch‐graft‐poly (AM–AA) superabsorbent nanocomposite (8 wt % MMT) has good thermal stability. This superabsorbent nanocomposite with excellent water absorbency and water retention, being biodegradable in nature, economical and environment friendly, could be especially useful in industry, agricultural, and horticultural applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号