首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many other target organisms. For example, pests such as sucking insects require the presence of dsRNA in vascular tissues, while many fungal pathogens are predominately located in internal plant tissues. Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and understanding the barriers that may hinder this process are essential for developing efficient ways to deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf morphological features as well as environmental factors, and address methods to overcome these barriers.  相似文献   

2.
3.
Host-induced gene silencing (HIGS) based on trans-kingdom RNA interference (RNAi) has been successfully exploited to engineer host resistance to pests and pathogens, including fungi and oomycetes. However, revealing the mechanisms underlying trans-kingdom RNAi between hosts and pathogens lags behind applications. The effectiveness and durability of trans-kingdom silencing of pathogenic genes are uncharacterized. In this study, using our transgenic 35S-VdH1i cotton plants in which dsVdH1-derived small RNAs (siVdH1) accumulated, small RNA sequencing analysis revealed that siVdH1s exclusively occur within the double-stranded (ds)VdH1 region, and no transitive siRNAs were produced beyond this region in recovered hyphae of Verticillium dahliae (V. dahliae). Accordingly, we found that VdH1 silencing was reduced over time in recovered hyphae cultured in vitro, inferring that once the fungus got rid of the 35S-VdH1i cotton plants would gradually regain their pathogenicity. To explore whether continually exporting dsRNAs/siRNAs from transgenic plants into recipient fungal cells guaranteed the effectiveness and stability of HIGS, we created GFP/RFP double-labeled V. dahliae and transgenic Arabidopsis expressing dsGFP (35S-GFPi plants). Confocal images visually demonstrate the efficient silencing of GFP in V. dahliae that colonized host vascular tissues. Taken together, our results demonstrate that HIGS effectively triggers long-lasting trans-kingdom RNAi during plant vasculature V. dahliae interactions, despite no amplification or transitivity of RNAi being noted in this soil-borne fungal pathogen.  相似文献   

4.
Recent investigations have shown the possibility of artificial induction of RNA interference (RNAi) via plant foliar treatments with naked double-stranded RNA (dsRNA) to silence essential genes in plant fungal pathogens or to target viral RNAs. Furthermore, several studies have documented the downregulation of plant endogenous genes via external application of naked gene-specific dsRNAs and siRNAs to the plant surfaces. However, there are limited studies on the dsRNA processing and gene silencing mechanisms after external dsRNA application. Such studies would assist in the development of innovative tools for crop improvement and plant functional studies. In this study, we used exogenous gene-specific dsRNA to downregulate the gene of chalcone synthase (CHS), the key enzyme in the flavonoid/anthocyanin biosynthesis pathway, in Arabidopsis. The nonspecific NPTII-dsRNA encoding the nonrelated neomycin phosphotransferase II bacterial gene was used to treat plants in order to verify that any observed effects and processing of AtCHS mRNA were sequence specific. Using high-throughput small RNA (sRNA) sequencing, we obtained six sRNA-seq libraries for plants treated with water, AtCHS-dsRNA, or NPTII-dsRNA. After plant foliar treatments, we detected the emergence of a large number of AtCHS- and NPTII-encoding sRNAs, while there were no such sRNAs after control water treatment. Thus, the exogenous AtCHS-dsRNAs were processed into siRNAs and induced RNAi-mediated AtCHS gene silencing. The analysis showed that gene-specific sRNAs mapped to the AtCHS and NPTII genes unevenly with peak read counts at particular positions, involving primarily the sense strand, and documented a gradual decrease in read counts from 17-nt to 30-nt sRNAs. Results of the present study highlight a significant potential of exogenous dsRNAs as a promising strategy to induce RNAi-based downregulation of plant gene targets for plant management and gene functional studies.  相似文献   

5.
6.
7.
8.
RNAi technology is a versatile, effective, safe, and eco-friendly alternative for crop protection. There is plenty of evidence of its use through host-induced gene silencing (HIGS) and emerging evidence that spray-induced gene silencing (SIGS) techniques can work as well to control viruses, bacteria, fungi, insects, and nematodes. For SIGS, its most significant challenge is achieving stability and avoiding premature degradation of RNAi in the environment or during its absorption by the target organism. One alternative is encapsulation in liposomes, virus-like particles, polyplex nanoparticles, and bioclay, which can be obtained through the recombinant production of RNAi in vectors, transgenesis, and micro/nanoencapsulation. The materials must be safe, biodegradable, and stable in multiple chemical environments, favoring the controlled release of RNAi. Most of the current research on encapsulated RNAi focuses primarily on oral delivery to control insects by silencing essential genes. The regulation of RNAi technology focuses on risk assessment using different approaches; however, this technology has positive economic, environmental, and human health implications for its use in agriculture. The emergence of alternatives combining RNAi gene silencing with the induction of resistance in crops by elicitation and metabolic control is expected, as well as multiple silencing and biotechnological optimization of its large-scale production.  相似文献   

9.
Urinary extracellular vesicles (EVs) and their RNA cargo are a novel source of biomarkers for various diseases. We aimed to identify the optimal method for isolating small (<200 nm) EVs from human urine prior to small RNA analysis. EVs from filtered healthy volunteer urine were concentrated using three methods: ultracentrifugation (UC); a precipitation-based kit (PR); and ultrafiltration (UF). EVs were further purified by size-exclusion chromatography (SEC). EV preparations were analysed with transmission electron microscopy (TEM), Western blotting, nanoparticle tracking analysis (NTA) and an Agilent Bioanalyzer Small RNA kit. UF yielded the highest number of particles both before and after SEC. Small RNA analysis from UF-concentrated urine identified two major peaks at 10–40 nucleotides (nt) and 40–80 nt. In contrast, EV preparations obtained after UC, PR or SEC combined with any concentrating method, contained predominantly 40–80 nt sized small RNA. Protein fractions from UF+SEC contained small RNA of 10–40 nt in size (consistent with miRNAs). These data indicate that most of the microRNA-sized RNAs in filtered urine are not associated with small-sized EVs, and highlights the importance of removing non-vesicular proteins and RNA from urine EV preparations prior to small RNA analysis.  相似文献   

10.
RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.  相似文献   

11.
Colorectal cancer (CRC) and ovarian cancer (OvC) patients frequently develop peritoneal metastasis, a condition associated with a very poor prognosis. In these cancers, tumor-derived extracellular vesicles (EVs) cause immunosuppression, facilitate the direct attachment and invasion of cancer cells through the mesothelium, induce the conversion of peritoneal mesothelial cells (PMCs) into cancer-associated fibroblasts (CAFs) and transfer a more aggressive phenotype amongst cancer cells. Although the promoting role of EVs in CRC and OvC peritoneal metastasis is well established, the specific molecules that mediate the interactions between tumor-derived EVs and immune and non-immune target cells remain elusive. Here, we employed the SKOV-3 (ovarian adenocarcinoma) and Colo-320 (colorectal adenocarcinoma) human cell lines as model systems to study the interactions and uptake of EVs produced by ovarian carcinoma and colorectal carcinoma cells, respectively. We established that the adhesion molecule ALCAM/CD166 is involved in the interaction of cancer-derived EVs with recipient cancer cells (a process termed “EV binding” or “EV docking”) and in their subsequent uptake by these cells. The identification of ALCAM/CD166 as a molecule mediating the docking and uptake of CRC and OvC-derived EVs may be potentially exploited to block the peritoneal metastasis cascade promoted by EVs in CRC and OvC patients.  相似文献   

12.
13.
In this work, we obtained carbon dots from glucose or saccharose as the nucleation source and passivated them with branched polyethylenimines for developing dsRNA nanocomposites. The CDs were fully characterized using hydrodynamic analyses, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The ζ potential determined that the CDs had positive charges, good electrophoretic mobility and conductivity, and were suitable for obtaining dsRNA nanocomposites. DsRNA naked or coated with the CDs were delivered to leaves of cucumber plants by spraying. Quantitation of the dsRNA that entered the leaves showed that when coated with the CDs, 50-fold more dsRNA was detected than when naked dsRNA. Moreover, specific siRNAs derived from the sprayed dsRNAs were 13 times more abundant when the dsRNA was coated with the CDs. Systemic dsRNAs were determined in distal leaves and showed a dramatic increase in concentration when delivered as a nanocomposite. Similarly, systemic siRNAs were significantly more abundant in distal leaves when spraying with the CD-dsRNA nanocomposite. Furthermore, FITC-labeled dsRNA was shown to accumulate in the apoplast and increase its entry into the plant when coated with CDs. These results indicate that CDs obtained by hydrothermal synthesis are suitable for dsRNA foliar delivery in RNAi plant applications.  相似文献   

14.
The delivery of siRNAs to selectively target cells poses a great challenge in RNAi-based cancer therapy. The lack of suitable cell-targeting methods seriously restricts the advance in delivering siRNAs to extrahepatic tissues. Based on prostate-specific membrane antigen (PSMA)-targeting ligands, we have synthesized a series of lysine-urea-glutamate (KUE)-siRNA conjugates and verified their effective cell uptake and gene silencing properties in prostate cancers. The results indicated that the KUE-siRNA conjugates could selectively enter PSMA+ LNCaP cells, eventually down-regulating STAT3 expression. Based on post-synthesis modification and receptor-mediated endocytosis, this strategy of constructing ligand-siRNA conjugates might provide a general method of siRNA delivery for cell-targeted gene silencing.  相似文献   

15.
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) regulate gene expression in a sequence-specific manner. Genes with partial complementarity to siRNA/miRNA sequences in their 3′-untranslated regions (UTRs) are suppressed by a mechanism referred to as the siRNA off-target effect or miRNA-mediated RNA silencing. However, the determinants of such RNA silencing efficiency are poorly understood. Previously, I and co-workers reported that the efficiency of RNA silencing is strongly correlated with the thermodynamic stability of base pairing in the duplex formed within an siRNA/miRNA and between the seed region and its target mRNA. In this review, I first summarize our previous studies that identified the thermodynamic parameter to estimate the silencing efficiency using the calculated base pairing stability: siRNAs downregulate the expression of off-target genes depending on the stability of binding between the siRNA seed region (nucleotides 2–8) and off-target mRNAs, and miRNAs downregulate target mRNA expression depending on the stability of the duplex formed between the 5′ terminus of the miRNA and its target mRNA. I further discuss the possibility that such thermodynamic features of silencing efficiency may have arisen during evolution with increasing body temperature in various organisms.  相似文献   

16.
17.
Extracellular vesicles (EVs) are important for intercellular signalling in multi-cellular organisms. However, the role of mature transfer RNAs (tRNAs) and tRNA fragments in EVs has yet to be characterised. This systematic review aimed to identify up-to-date literature on tRNAs present within human EVs and explores their potential clinical significance in health and disease. A comprehensive and systematic literature search was performed, and the study was conducted in accordance with PRISMA guidelines. Electronic databases MEDLINE and EMBASE were searched up until 1 January 2022. From 685 papers, 60 studies were identified for analysis. The majority of papers reviewed focussed on the role of EV tRNAs in cancers (31.7%), with numerous other conditions represented. Blood and cell lines were the most common EV sources, representing 85.9% of protocols used. EV isolation methods included most known methods, precipitation being the most common (49.3%). The proportion of EV tRNAs was highly variable, ranging between 0.04% to >95% depending on tissue source. EV tRNAs are present in a multitude of sources and show promise as disease markers in breast cancer, gastrointestinal cancers, and other diseases. EV tRNA research is an emerging field, with increasing numbers of papers highlighting novel methodologies for tRNA and tRNA fragment discovery.  相似文献   

18.
Small interfering RNA (siRNA) is the most important tool for the manipulation of mRNA expression and needs protection from intracellular nucleases when delivered into the cell. In this work, we examined the effects of siRNA modification with the phosphoryl guanidine (PG) group, which, as shown earlier, makes oligodeoxynucleotides resistant to snake venom phosphodiesterase. We obtained a set of siRNAs containing combined modifications PG/2′-O-methyl (2′-OMe) or PG/2′-fluoro (2′-F); biophysical and biochemical properties were characterized for each duplex. We used the UV-melting approach to estimate the thermostability of the duplexes and RNAse A degradation assays to determine their stability. The ability to induce silencing was tested in cultured cells stably expressing green fluorescent protein. The introduction of the PG group as a rule decreased the thermodynamic stability of siRNA. At the same time, the siRNAs carrying PG groups showed increased resistance to RNase A. A gene silencing experiment indicated that the PG-modified siRNA retained its activity if the modifications were introduced into the passenger strand.  相似文献   

19.
20.
Recent evidence pinpoints extracellular vesicles (EVs) as key players in intercellular communication. Given the importance of cholesterol and sphingomyelin in EV biology, and the relevance of mitochondria-associated endoplasmic reticulum membranes (MAMs) in cholesterol/sphingomyelin homeostasis, we evaluated if MAMs and sphingomyelinases (SMases) could participate in ethanol-induced EV release. EVs were isolated from the extracellular medium of BV2 microglia treated or not with ethanol (50 and 100 mM). Radioactive metabolic tracers combined with thin layer chromatography were used as quantitative methods to assay phospholipid transfer, SMase activity and cholesterol uptake/esterification. Inhibitors of SMase (desipramine and GW4869) and MAM (cyclosporin A) activities were also utilized. Our data show that ethanol increases the secretion and inflammatory molecule concentration of EVs. Ethanol also upregulates MAM activity and alters lipid metabolism by increasing cholesterol uptake, cholesterol esterification and SMase activity in microglia. Notably, the inhibition of either SMase or MAM activity prevented the ethanol-induced increase in EV secretion. Collectively, these results strongly support a lipid-driven mechanism, specifically via SMases and MAM, to explain the effect of ethanol on EV secretion in glial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号