首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Altered mitochondrial function is currently recognized as an important factor in atherosclerosis initiation and progression. Mitochondrial dysfunction can be caused by mitochondrial DNA (mtDNA) mutations, which can be inherited or spontaneously acquired in various organs and tissues, having more or less profound effects depending on the tissue energy status. Arterial wall cells are among the most vulnerable to mitochondrial dysfunction due to their barrier and metabolic functions. In atherosclerosis, mitochondria cause alteration of cellular metabolism and respiration and are known to produce excessive amounts of reactive oxygen species (ROS) resulting in oxidative stress. These processes are involved in vascular disease and chronic inflammation associated with atherosclerosis. Currently, the list of known mtDNA mutations associated with human pathologies is growing, and many of the identified mtDNA variants are being tested as disease markers. Alleviation of oxidative stress and inflammation appears to be promising for atherosclerosis treatment. In this review, we discuss the role of mitochondrial dysfunction in atherosclerosis development, focusing on the key cell types of the arterial wall involved in the pathological processes. Accumulation of mtDNA mutations in isolated arterial wall cells, such as endothelial cells, may contribute to the development of local inflammatory process that helps explaining the focal distribution of atherosclerotic plaques on the arterial wall surface. We also discuss antioxidant and anti-inflammatory approaches that can potentially reduce the impact of mitochondrial dysfunction.  相似文献   

2.
Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality worldwide. mtDNA (mitochondrial DNA) mutations are known to participate in the development and progression of some CVD. Moreover, specific types of mitochondria-mediated CVD have been discovered, such as MIEH (maternally inherited essential hypertension) and maternally inherited CHD (coronary heart disease). Maternally inherited mitochondrial CVD is caused by certain mutations in the mtDNA, which encode structural mitochondrial proteins and mitochondrial tRNA. In this review, we focus on recently identified mtDNA mutations associated with CVD (coronary artery disease and hypertension). Additionally, new data suggest the role of mtDNA mutations in Brugada syndrome and ischemic stroke, which before were considered only as a result of mutations in nuclear genes. Moreover, we discuss the molecular mechanisms of mtDNA involvement in the development of the disease.  相似文献   

3.
Replication and maintenance of mtDNA entirely relies on a set of proteins encoded by the nuclear genome, which include members of the core replicative machinery, proteins involved in the homeostasis of mitochondrial dNTPs pools or deputed to the control of mitochondrial dynamics and morphology. Mutations in their coding genes have been observed in familial and sporadic forms of pediatric and adult-onset clinical phenotypes featuring mtDNA instability. The list of defects involved in these disorders has recently expanded, including mutations in the exo-/endo-nuclease flap-processing proteins MGME1 and DNA2, supporting the notion that an enzymatic DNA repair system actively takes place in mitochondria. The results obtained in the last few years acknowledge the contribution of next-generation sequencing methods in the identification of new disease loci in small groups of patients and even single probands. Although heterogeneous, these genes can be conveniently classified according to the pathway to which they belong. The definition of the molecular and biochemical features of these pathways might be helpful for fundamental knowledge of these disorders, to accelerate genetic diagnosis of patients and the development of rational therapies. In this review, we discuss the molecular findings disclosed in adult patients with muscle pathology hallmarked by mtDNA instability.  相似文献   

4.
Mitochondrial DNA (mtDNA) is the genetic information of mitochondrion, and its structure is circular double-stranded. Despite the diminutive size of the mitochondrial genome, mtDNA mutations are an important cause of mitochondrial diseases which are characterized by defects in oxidative phosphorylation (OXPHOS). Mitochondrial diseases are involved in multiple systems, particularly in the organs that are highly dependent on aerobic metabolism. The diagnosis of mitochondrial disease is more complicated since mtDNA mutations can cause various clinical symptoms. To realize more accurate diagnosis and treatment of mitochondrial diseases, the detection of mtDNA and the design of drugs acting on it are extremely important. Over the past few years, many probes and therapeutic drugs targeting mtDNA have been developed, making significant contributions to fundamental research including elucidation of the mechanisms of mitochondrial diseases at the genetic level. In this review, we summarize the structure, function, and detection approaches for mtDNA. The most current topics in this field, such as mechanistic exploration and treatment of mtDNA mutation-related disorders, are also reviewed. Specific attention is given to discussing the design and development of these probes and drugs for mtDNA. We hope that this review will provide readers with a comprehensive understanding of the importance of mtDNA, and promote the development of effective molecules for theragnosis of mtDNA mutation-related diseases.  相似文献   

5.
In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.  相似文献   

6.
Osteoarthritis (OA) is a severe, common chronic orthopaedic disorder characterised by a degradation of the articular cartilage with an incidence that increases over years. Despite the availability of various clinical options, none can stop the irreversible progression of the disease to definitely cure OA. Various mutations have been evidenced in the mitochondrial DNA (mtDNA) of cartilage cells (chondrocytes) in OA, leading to a dysfunction of the mitochondrial oxidative phosphorylation processes that significantly contributes to OA cartilage degeneration. The mitochondrial genome, therefore, represents a central, attractive target for therapy in OA, especially using genome editing procedures. In this narrative review article, we present and discuss the current advances and breakthroughs in mitochondrial genome editing as a potential, novel treatment to overcome mtDNA-related disorders such as OA. While still in its infancy and despite a number of challenges that need to be addressed (barriers to effective and site-specific mtDNA editing and repair), such a strategy has strong value to treat human OA in the future, especially using the groundbreaking clustered regularly interspaced short palindromic repeats (CRIPSR)/CRISPR-associated 9 (CRISPR/Cas9) technology and mitochondrial transplantation approaches.  相似文献   

7.
Mitochondria are the major source of intercellular bioenergy in the form of ATP. They are necessary for cell survival and play many essential roles such as maintaining calcium homeostasis, body temperature, regulation of metabolism and apoptosis. Mitochondrial dysfunction has been observed in variety of diseases such as cardiovascular disease, aging, type 2 diabetes, cancer and degenerative brain disease. In other words, the interpretation and regulation of mitochondrial signals has the potential to be applied as a treatment for various diseases caused by mitochondrial disorders. In recent years, mitochondrial transplantation has increasingly been a topic of interest as an innovative strategy for the treatment of mitochondrial diseases by augmentation and replacement of mitochondria. In this review, we focus on diseases that are associated with mitochondrial dysfunction and highlight studies related to the rescue of tissue-specific mitochondrial disorders. We firmly believe that mitochondrial transplantation is an optimistic therapeutic approach in finding a potentially valuable treatment for a variety of mitochondrial diseases.  相似文献   

8.
Background: Mitochondrial DNA (mtDNA) diseases are a group of maternally inherited genetic disorders caused by a lack of energy production. Currently, mtDNA diseases have a poor prognosis and no known cure. The chance to have unaffected offspring with a genetic link is important for the affected families, and mitochondrial replacement techniques (MRTs) allow them to do so. MRTs consist of transferring the nuclear DNA from an oocyte with pathogenic mtDNA to an enucleated donor oocyte without pathogenic mtDNA. This paper aims to determine the efficacy, associated risks, and main ethical and legal issues related to MRTs. Methods: A bibliographic review was performed on the MEDLINE and Web of Science databases, along with searches for related clinical trials and news. Results: A total of 48 publications were included for review. Five MRT procedures were identified and their efficacy was compared. Three main risks associated with MRTs were discussed, and the ethical views and legal position of MRTs were reviewed. Conclusions: MRTs are an effective approach to minimizing the risk of transmitting mtDNA diseases, but they do not remove it entirely. Global legal regulation of MRTs is required.  相似文献   

9.
Mitochondrial DNA (mtDNA) has been identified as a significant genetic biomarker in disease, cancer and evolution. Mitochondria function as modulators for regulating cellular metabolism. In the clinic, mtDNA variations (mutations/single nucleotide polymorphisms) and dysregulation of mitochondria-encoded genes are associated with survival outcomes among cancer patients. On the other hand, nuclear-encoded genes have been found to regulate mitochondria-encoded gene expression, in turn regulating mitochondrial homeostasis. These observations suggest that the crosstalk between the nuclear genome and mitochondrial genome is important for cellular function. Therefore, this review summarizes the significant mechanisms and functional roles of mtDNA variations (DNA level) and mtDNA-encoded genes (RNA and protein levels) in cancers and discusses new mechanisms of crosstalk between mtDNA and the nuclear genome.  相似文献   

10.
Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA (mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory, which states that the environment during fetal life influences the predisposition to disease and the risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper summarizes the results of recent epidemiological studies on the relationship between environmental factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.  相似文献   

11.
Glioblastoma (GBM) is an extremely aggressive tumor originating from neural stem cells of the central nervous system, which has high histopathological and genomic diversity. Mitochondria are cellular organelles associated with the regulation of cellular metabolism, redox signaling, energy generation, regulation of cell proliferation, and apoptosis. Accumulation of mutations in mitochondrial DNA (mtDNA) leads to mitochondrial dysfunction that plays an important role in GBM pathogenesis, favoring abnormal energy and reactive oxygen species production and resistance to apoptosis and to chemotherapeutic agents. The present review summarizes the known mitochondrial DNA alterations related to GBM, their cellular and metabolic consequences, and their association with diagnosis, prognosis, and treatment.  相似文献   

12.
13.
Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.  相似文献   

14.
Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.  相似文献   

15.
16.
Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies.  相似文献   

17.
In normal cells, mitochondria are the primary organelles that generate energy, which is critical for cellular metabolism. Mitochondrial dysfunction, caused by mitochondrial DNA (mtDNA) mutations or an abnormal mtDNA copy number, is linked to a range of human diseases, including Alzheimer’s disease, premature aging‎ and cancer. mtDNA resides in the mitochondrial lumen, and its duplication requires the mtDNA replicative helicase, Twinkle. In addition to Twinkle, many DNA helicases, which are encoded by the nuclear genome and are crucial for nuclear genome integrity, are transported into the mitochondrion to also function in mtDNA replication and repair. To date, these helicases include RecQ-like helicase 4 (RECQ4), petite integration frequency 1 (PIF1), DNA replication helicase/nuclease 2 (DNA2) and suppressor of var1 3-like protein 1 (SUV3). Although the nuclear functions of some of these DNA helicases have been extensively studied, the regulation of their mitochondrial transport and the mechanisms by which they contribute to mtDNA synthesis and maintenance remain largely unknown. In this review, we attempt to summarize recent research progress on the role of mammalian DNA helicases in mitochondrial genome maintenance and the effects on mitochondria-associated diseases.  相似文献   

18.
Human mitochondrial DNA (mtDNA) is located in discrete DNA-protein complexes, so called nucleoids. These structures can be easily visualized in living cells by utilizing the fluorescent stain PicoGreen®. In contrary, cells devoid of endogenous mitochondrial genomes (ρ0 cells) display no mitochondrial staining in the cytoplasm. A modified restriction enzyme can be targeted to mitochondria to cleave the mtDNA molecules in more than two fragments, thereby activating endogenous nucleases. By applying this novel enzymatic approach to generate mtDNA-depleted cells the destruction of mitochondrial nucleoids in cultured cells could be detected in a time course. It is clear from these experiments that mtDNA-depleted cells can be seen as early as 48 h post-transfection using the depletion system. To prove that mtDNA is degraded during this process, mtDNA of transfected cells was quantified by real-time PCR. A significant decline could be observed 24 h post-transfection. Combination of both results showed that mtDNA of transfected cells is completely degraded and, therefore, ρ0 cells were generated within 48 h. Thus, the application of a mitochondrially-targeted restriction endonuclease proves to be a first and fast, but essential step towards a therapy for mtDNA disorders.  相似文献   

19.
Symbiosis between the mitochondrion and the ancestor of the eukaryotic cell allowed cellular complexity and supported life. Mitochondria have specialized in many key functions ensuring cell homeostasis and survival. Thus, proper communication between mitochondria and cell nucleus is paramount for cellular health. However, due to their archaebacterial origin, mitochondria possess a high immunogenic potential. Indeed, mitochondria have been identified as an intracellular source of molecules that can elicit cellular responses to pathogens. Compromised mitochondrial integrity leads to release of mitochondrial content into the cytosol, which triggers an unwanted cellular immune response. Mitochondrial nucleic acids (mtDNA and mtRNA) can interact with the same cytoplasmic sensors that are specialized in recognizing genetic material from pathogens. High-energy demanding cells, such as neurons, are highly affected by deficits in mitochondrial function. Notably, mitochondrial dysfunction, neurodegeneration, and chronic inflammation are concurrent events in many severe debilitating disorders. Interestingly in this context of pathology, increasing number of studies have detected immune-activating mtDNA and mtRNA that induce an aberrant production of pro-inflammatory cytokines and interferon effectors. Thus, this review provides new insights on mitochondria-driven inflammation as a potential therapeutic target for neurodegenerative and primary mitochondrial diseases.  相似文献   

20.
Polycystic ovarian syndrome (PCOS) is the most common endocrine–metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号