首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, phase separation in carbon nanofiber (CNF) composites with a blend of ultrahigh molecular weight polyethylene (UHMWPE)/high‐density polyethylene (HDPE) was revealed, and its effects on tribological properties were investigated. Results from morphological analysis by optical and scanning electron microscopy indicated two distinct microstructures: a dispersed UHMWPE phase and a continuous microstructure containing HDPE and CNFs. The addition of CNFs into the UHMWPE/HDPE blend induced a decreased steady‐state torque indicative of a decreased dissolution and improved processability. Because CNFs predominantly resided into the HDPE phase, neat HDPE, a HDPE/CNF composite, and neat UHMWPE samples were also prepared for comparison. Wear results, determined by a pin‐on‐disk apparatus, showed that both initial run‐in and steady‐state wear rates of the UHMWPE/HDPE/CNF nanocomposites were reduced with an increasing concentration of CNFs. The wear resistance of the UHMWPE/HDPE blend was more strongly influenced than neat HDPE by the addition of CNFs, which may have been affected by a reduced dissolution and improved interfacial interaction between the two phases. Results from this study suggested that HDPE may not be appropriate for processing UHMWPE composites, as CNFs reside in the HDPE phase, and HDPE diminishes the wear resistance of the material. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
《Polymer Composites》2017,38(10):2212-2220
Sandwich composites based on coir fiber nonwoven mats as core material were manufactured by Vacuum Assisted Resin Transfer Molding technique. Mechanical and physical properties of produced coir/polyester and coir‐glass/polyester composites were assessed. Samples were evaluated according to their reinforcement contents, resin contents, areal density, and thickness. Tests on physical properties revealed that coir‐glass/polyester sandwich structure has the lowest values of thickness swelling, water absorption and moisture contents compared with coir/polyester composite. Mechanical tests such as tensile strength, open‐hole tensile strength, and flexural strength were also performed on all samples. Coir‐glass/polyester sandwich structure showed significant increase in tensile strength of 70 MPa compared with 8 MPa of coir/polyester composite. Introducing two skins of fiber glass woven roving to coir/polyester increased its flexural strength from 31.8 to 131.8 MPa for coir‐glass/polyester. POLYM. COMPOS., 38:2212–2220, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
The incorporation of carbon nanofiber (CNF) into glass fiber (GF) composites is a potential route to extend polymer composite service‐life and enhance mechanical properties. Under nonstatic conditions, only limited information concerning water uptake and contaminant release properties of nanocomposite materials is currently available. Polyester composites containing GF and oxidized CNF were immersed in water for 30 days under nominal pressure at 23 °C, below the polymer's glass‐transition temperature. Water was analyzed and changed every three days to simulate water chemistry regeneration similar to exposures in flowing systems. Composites with oxidized CNF had greater water sorption capacity and leaching rates than CNF‐free composites. The total mass of organic contaminant released correlated with the amount of water sorbed by each composite (r2 = 0.91), although CNF dispersion was found to vary greatly within composites. The greatest and least contaminant release rates were found for the polyester‐CNF and the polyester‐GF composites, respectively. While volatile aromatic resin solvents and stabilizer compounds were detected, their concentrations declined over the 30 day exposure period. We hypothesize that the hydrophilic nature of the oxidized CNF increased the water sorption capacity of the polyester composites. Additional studies are warranted that examine the impact of this phenomenon on composite mechanical and long‐term durability properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43724.  相似文献   

4.
The present article reports the development and characterization of carbon nanofiber (CNF)‐incorporated carbon/phenolic multiscale composites. Vapor‐grown CNFs were dispersed homogeneously in to phenolic resin using an effective dispersion route, and carbon fabrics were subsequently impregnated with the CNF‐dispersed resin to develop carbon fiber/CNF/phenolic resin multiscale composites. Mechanical and thermal transmission properties of multiscale composites were characterized. Elastic modulus and thermal conductivity of neat carbon/phenolic and multiscale composites were predicted and compared with the experimental results. It was observed that incorporation of only 1.5 wt % CNF resulted in 10% improvement in Young's modulus, 12% increase in tensile strength, and 36% increase in thermal conductivity of carbon/phenolic composites. Fracture surface of composite samples revealed the formation of stronger fiber/matrix interface in case of multiscale composites than neat carbon/phenolic composites. Enhancement of above properties through CNF addition has been explained, and the difference between the predicted values and experimental results has been discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
《Polymer Composites》2017,38(11):2440-2449
Nanocomposites comprising carbon nanofibers (CNF) were prepared and evaluated in terms of morphology, mechanical performance, thermal stability and crystallization properties. It was found that addition of CNF reinforced polypropylene (PP) matrix by marginally increasing the strength and modulus, but at the expense of toughness and ductility. To improve the toughness of the composites, polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene (SEBS) was used. Presence of SEBS remarkably improved the toughness and ductility of the composites. The optimum level of reinforcement was observed at 0.1 wt% of CNF in the composites. Phase morphology studies revealed that at this concentration, CNF were well dispersed in polymer phases and beyond it, agglomeration occurred. PP/SEBS/CNF (0.1 wt%) nanocomposites exhibited good strength, excellent toughness and decent modulus, which make them suitable for cost effective, light‐weight, tough and stiff material for engineering applications. It was observed that thermal stability of composites is only marginally improved whereas crystallinity of PP drastically reduced by the addition of CNF. POLYM. COMPOS., 38:2440–2449, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
采用真空辅助RTM成型方法制备了0.5%碳纳米纤维(CNF)玻纤/环氧(GF/EP)复合材料,并对其一维饱和渗透率、不同温度下的力学性能、耐固体粒子冲蚀磨损性能进行了测试和研究分析。实验结果表明,加入0.5%CNF之后,平行于纤维方向的饱和渗透率降低了2~6倍,垂直于纤维方向的饱和渗透率降低了2~5倍;在孔隙率小于0.44时,两个方向的饱和渗透率差别不大,均接近于零;0.5%CNF的加入对纯EP及垂直于纤维方向复合材料的机械性能和耐固体粒子冲蚀磨损性能影响较小,在平行于纤维方向上复合材料的力学性能和耐固体粒子冲蚀磨损性能均有提高;在不同温度下,0.5%CNF的加入使垂直纤维方向上复合材料拉伸强度的稳定性得到提高。  相似文献   

7.
In this investigation, the characteristics and the rheological properties of two different nanocomposite systems were investigated. These systems consisted of a dispersion of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) in a polypropylene (PP) matrix. The mixing process was carried out by melt compounding with a twin‐screw corotating extruder with different reinforcement amounts (0.2–20 wt %) from concentrated masterbatches (20 wt %) of PP/CNT and PP/CNF. The results show a remarkable increase in the viscosity for both blends as the reinforcement amount was increased. It was important to evaluate the rheological behavior to understand the effect of the nanocarbon particles on the internal structures and their processing properties of the obtained composites. CNFs were a more viable reinforcement from a processability point of view because the obtained viscosities of the PP/CNF blends were more manageable. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
In this study, the effects of carbon nanofiber (CNF) surface modification on mechanical properties of polyamide 1212 (PA1212)/CNFs composites were investigated. CNFs grafted with ethylenediamine (CNF‐g‐EDA), and CNFs grafted with polyethyleneimine (CNF‐g‐PEI) were prepared and characterized. The mechanical properties of the PA1212/CNFs composites were reinforced efficiently with addition of 0.3 wt % modified CNFs after drawing. The reinforcing effect of the drawn composites was investigated in terms of interfacial interaction, crystal orientation, crystallization properties and so on. After the surface modification of CNFs, the interfacial adhesion and dispersion of CNFs in PA1212 matrix were improved, especially for CNF‐g‐PEI. The improved interfacial adhesion and dispersion of CNFs in PA1212 matrix was beneficial to reinforcement of the composites. Compared with pure PA1212, improved degree of crystal orientation in the PA1212/CNF‐g‐PEI (CNF‐g‐EDA) composites was responsible for reinforcement of mechanical properties after drawing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41424.  相似文献   

9.
To improve the processability of micropolymer‐based devices used for biomedical applications, poly(lactic acid) (PLA) was melt‐blended with poly(ethylene glycol)s (PEGs) of different molecular weights (MWs; weight‐average MWs = 200, 800, 2000, and 4000; these PEGS are referred to as PEG200, PEG800, PEG2000, and PEG4000, respectively, in this article). The thermal properties, mechanical properties, and rheological properties of the PLA and the PLA–PEG blends were investigated. The tensile samples’ morphologies showed that the low‐MW PEGs filled molds well. The rheological properties confirmed that the low‐MW PEGs decreased the complex viscosity, and improved the processability. With decreasing PEG MW, the PLA glass‐transition temperature decreased. The nanoindenter data show that the addition of PEG decreased the modulus and hardness of PLA. The morphologies of the tensile samples showed that with increasing PEG MW, the thicknesses of the core layers increased gradually. The elongation at break was improved by approximately 247% with the addition of PEG200. Such methods can produce easily processed biological materials for producing biomedical products. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45194.  相似文献   

10.
The effect of CNFs on hard and soft segments of TPU matrix was evaluated using Fourier transform infrared (FTIR) spectroscope. The dispersion and distribution of the CNFs in the TPU matrix were investigated through wide angle X‐ray diffraction (WAXD), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), polarizing optical microscope (POM), and atomic force microscope (AFM). The thermogravimetric analysis (TGA) showed that the inclusion of CNF improved the thermal stability of virgin TPU. The glass transition temperature (Tg), crystallization, and melting behaviors of the TPU matrix in the presence of dispersed CNF were observed by differential scanning calorimetry (DSC). The dynamic viscoelastic behavior of the nanocomposites was studied by dynamical mechanical thermal analysis (DMTA) and substantial improvement in storage modulus (E') was achieved with the addition of CNF to TPU matrix. The rheological behavior of TPU nanocomposites were tested by rubber processing analyzer (RPA) in dynamic frequency sweep and the storage modulus (G') of the nanocomposites was enhanced with increase in CNF loading. The dielectric properties of the nanocomposites exhibited significant improvement with incorporation of CNF. The TPU matrix exhibits remarkable improvement of mechanical properties with addition of CNF. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
In this study, cellulose nanofibers (CNF) derived from waste pineapple leaves (PALF) were incorporated into poly (lactic acid) (PLA) with the aim of developing completely biodegradable and sustainable composites. CNF was first prepared by the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) method, and then, different surface modifications of the eco-friendly method were carried out for better dispersion in the PLA matrix. Then, a series of eco-friendly modified CNF/PLA composites were prepared by melt-blending. According to the contact angle experiment, the values of eco-friendly modified CNFs increased from 12.02° to 61.49 and 57.45°, respectively. DSC thermograms show that eco-friendly modified CNFs have a significant nucleating effect for the crystallization of PLA compared to the original CNF. Mechanical testing reveals that the tensile and impact strengths of eco-friendly modified CNF containing composites are improved by 5.4~22.7% and 17.5~56.1%, respectively, through the addition of only 1~3 wt% of modified CNF, and are all higher than that of the original CNF containing composite. Moreover, eco-friendly modified CNF containing composites can allow good light transmittance due to better dispersity of the modified CNF. Consequently, the addition of modified CNFs to the PLA matrix results in increased mechanical and thermal properties of the composites, as well as transparency. Moreover, the addition of CNFs extracted from pineapple leaves by eco-friendly methods can not only reduce the amount of agriculture waste but also avoid the usage of an organic solvent and meet the requirements of environmental protection.  相似文献   

12.
The thermal properties of carbon nanofibers (CNF)/epoxy composites, composed of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) resin and 4,4′‐diaminodiphenylsulfone (DDS) as a curing agent, were investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and dynamic mechanical thermal analysis. DSC results showed that the presence of CNF had no pronounced influence on the heat of the cure reaction. However, the incorporation of CNF slightly improved the thermal stability of the epoxy. Furthermore, the storage modulus of the TGDDM/DDS epoxy was significantly enhanced, whereas the glass‐transition temperature was not significantly affected, upon the incorporation of CNFs. The storage modulus of 5 wt % CNF/epoxy composites at 25°C was increased by 35% in comparison with that of the pure epoxy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 295–298, 2006  相似文献   

13.
Process development and characterization of spraying carbon nanofibers (CNF) over carbon fiber fabrics for reinforcing polymer composites are presented in this study. The molded composite structure consists of a high‐temperature polymer reinforced with carbon fiber fabrics sprayed with different dosages of carbon nanofibers. The materials were molded using vacuum assisted resin transfer molding process. Tensile testing and scanning electron microscopy (SEM) were used to characterize the molded materials. The results show that the tensile strength and modulus were both improved over the molded materials without CNF. Spraying CNF with a dosage of an 8 µg/mm2 of the used fabrics helped to increase the tensile strength by 12%. The tensile modulus increased by 28% with a CNF dosage of 16 µg/mm2. Uniform distribution of CNF was observed under SEM in the molded composites. POLYM. COMPOS., 35:1629–1635, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
Acrylonitrile–styrene–acrylate/natural graphite/carbon nanofiber composites (ASA/NG/CNF) were prepared using a melting blending method. The effects of CNFs on the morphology, rheological properties, dynamical mechanical properties, electrical resistivity, and electromagnetic interference shielding effectiveness (EMI SE) were studied using a scanning electron microscope, a rotational rheometer, and dynamic mechanical analysis (DMA). The addition of CNFs changed the oriented and laminated structure of the ASA/NG composite. The flexural strength of the ASA composite reached a maximum at 6% CNF, and then it began to decrease. The addition of CNFs did not alter the glass‐transition temperature of ASA, but it largely increased the storage modulus of the composite in DMA tests. In the rheological measurements, the complex viscosity and storage modulus of the composite increased as CNF content increased, and the resistance to creep of the composites was significantly increased by the addition of CNFs. The electrical resistivity of the ASA composites decreased from 49.8 Ω cm to 2.3 Ω cm as the CNF content was increased from 0 to 12%. At the same time, the EMI properties of the composites rose from 15 dB to 30 dB in the frequency range 30–1500 MHz. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45455.  相似文献   

15.
A mechanically flexible mat consisting of structurally amorphous SiO2 (glass) nanofibers was first prepared by electrospinning followed by pyrolysis under optimized conditions and procedures. Thereafter, two types of hybrid multi‐scale epoxy composites were fabricated via the technique of vacuum assisted resin transfer molding. For the first type of composites, six layers of conventional glass microfiber (GF) fabrics were infused with the epoxy resin containing shortened electrospun glass nanofibers (S‐EGNFs). For the second type of composites, five layers of electrospun glass nanofiber mats (EGNF‐mats) were sandwiched between six layers of conventional GF fabrics followed by the infusion of neat epoxy resin. For comparison, the (conventional) epoxy composites with six layers of GF fabrics alone were also fabricated as the control sample. Incorporation of EGNFs (i.e., S‐EGNFs and EGNF‐mats) into GF/epoxy composites led to significant improvements in mechanical properties, while the EGNF‐mats outperformed S‐EGNFs in the reinforcement of resin‐rich interlaminar regions. The composites reinforced with EGNF‐mats exhibited the highest mechanical properties overall; specifically, the impact absorption energy, interlaminar shear strength, flexural strength, flexural modulus, and work of fracture were (1097.3 ± 48.5) J/m, (42.2 ± 1.4) MPa, (387.1 ± 9.9) MPa, (12.9 ± 1.3) GPa, and (30.6 ± 1.8) kJ/m2, corresponding to increases of 34.6%, 104.8%, 65.4%, 33.0%, and 56.1% compared to the control sample. This study suggests that EGNFs (particularly flexible EGNF‐mats) would be an innovative type of nanoscale reinforcement for the development of high‐performance structural composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42731.  相似文献   

16.
The uniform dispersion of cellulose nanofibers (CNFs) in non‐polar polymer matrices is a primary problem to overcome in creating novel nanocomposites from these materials. The aim of this study was to produce CNF‐polyethylene (PE) nanocomposites by melt compounding followed by injection molding to investigate the possibility of using polyvinyl alcohol (PVA) to improve the dispersion of CNF in the PE matrix. The tensile strength of CNF‐ filled composites was 17.4 MPa with the addition of 5 wt % CNF–PVA, which was 25% higher than the strength of neat PE. The tensile modulus of elasticity increased by 40% with 5% CNF–PVA addition. Flexural properties also significantly increased with increased CNF loading. Shear viscosity increased with increasing CNF content. The elastic moduli of the PE/CNF composites from rheological measurements were greater than those of the neat PE matrix because of the intrinsic rigidity of CNF. Melt creep compliance decreased by about 13% and 45% for the composites with 5 wt % CNF and 10 wt % CNF, respectively. It is expected that the PVA carrier system can contribute to the development of a process methodology to effectively disperse CNFs containing water in a polymer matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42933.  相似文献   

17.
Binary blends composed of 4,4′‐bis(3,4‐dicyanophenoxy)biphenyl (biphenyl PN) and diglycidyl ether of bisphenol A (epoxy resin) and oligomeric n = 4 phthalonitrile (n = 4 PN) and epoxy resin were prepared. The cure behavior of the blends was studied under dynamic and isothermal curing conditions using differential scanning calorimetry, simultaneous thermogravimetric/differential thermal analysis, infrared spectroscopy, and rheological analysis. The studies revealed that phthalonitrile‐epoxy blends exhibited good processability and that they copolymerized with or without the addition of curing additive. In the absence of curing additive, the blends required higher temperatures and longer cure times. The thermal and dynamic viscoelastic properties of amine‐cured phthalonitrile‐epoxy copolymers were examined and compared with those of the neat epoxy resin. The properties of the epoxy resin improved with increasing biphenyl PN content and with n = 4 PN addition. Specifically, the copolymers exhibited higher glass transition temperatures, increased thermal and thermo‐oxidative stabililty, and enhanced dynamic mechanical properties relative to the commercially available epoxy resin. The results showed that the phthalonitrile‐epoxy blends and copolymers have an attractive combination of processability and high temperature properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
The effects of the compounding sequence and addition of maleic anhydride grafted polypropylene (PP‐g‐MAH) as a sizing agent on the properties of glass fiber (GF)/nylon‐6,6 composite were investigated. Mechanical properties of tensile, impact, and flexural strength were measured. The fractured surface was analyzed to compare the variation of interfacial characteristics by different compounding sequences and addition of a sizing agent. It was found that mechanical and rheological properties of a composite are strongly affected by the compounding sequence and the addition of a sizing agent. In general, the addition of PP‐g‐MAH results in lowering the mechanical properties compared to GF/nylon‐6,6, while proper compounding sequence results in improved mechanical properties. Lowering melt viscosity of composites is achieved by addition of sizing agent and varied depending on the compounding sequence. POLYM. ENG. SCI., 59:155–161, 2019. © 2018 Society of Plastics Engineers  相似文献   

19.
In this study, a new approach was used to prepare polymer composites reinforced by both nanoparticles and continuous fibers. Carbon nanofibers were prebound onto glass fiber mats, and then unsaturated polyester composites were prepared by vacuum-assisted resin transfer molding. Mechanical and thermal properties of these composites were measured and compared with those of the composites synthesized by premixing carbon nanofibers with the polymer resin. Flexural strength and modulus of composites improved with the incorporation of nanoparticles. Specifically, the property improvement was higher in the case of the composites prepared by the new prebound method. It was also found that carbon nanofibers increased the glass transition temperature and reduced the thermal expansion coefficient of unsaturated polyester composites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

20.
In this article, the physical‐mechanical properties and processability of graft‐modified highly chlorinated polyethylene (HCPE; chlorine contents: ≥ 60%) with methyl methacrylate (MMA) by mechanochemistry reaction were studied. The results showed that the HCPE‐g‐MMA system is superior to unmodified HCPE in physical‐mechanical properties, particularly in processability. In addition, the HCPE‐g‐MMA system, with about 62% chlorine content, was the same as PVC in its physical‐mechanical properties. The HCPE‐g‐MMA system, with about 65.5% chlorine content, is the same as chlorinated poly(vinyl chloride) (CPVC) in its physical‐mechanical properties, except that the Vicat softening temperature and processability of HCPE‐g‐MMA system are superior to PVC and CPVC. Compared with PVC and CPVC, the HCPE‐g‐MMA system proves better due to its lack of a toxic monomer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 282–287, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号