首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
To improve the properties of polyamide 6 (PA6) composites, a series of modified PA6 composites was prepared by reaction extrusion. An amorphous PA6 was first obtained by the complexing reaction of Li+ in lithium chloride with amino groups, and then epoxy resins, nano‐SiO2 as well as POE‐g‐MAH were in turn added into the PA6/LiCl system. The effect of different additives on the crystallization behavior and mechanical properties of PA6 composites was well‐studied by X‐ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and mechanical properties tests. The results demonstrated that PA6 was amorphous at 6 phr lithium chloride and a network structure was formed in PA6 matrix in the presence of epoxy resins, thus the mechanical properties of composites greatly were enhanced. However too many nano‐SiO2 particles might impair the tensile strength of PA6 composites. Additionally, a PA6 composite with excellent properties was obtained in the presence of POE‐g‐MAH due to the crystal form change in PA6 matrix and the strong interaction between PA6 and POE‐g‐MAH. POLYM. COMPOS., 35:985–992, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
In order to overcome the brittle fracture characteristics of polyamides, the study on high efficiency toughening of polyamides is always a hot topic. In this article, n‐ethyl‐p‐toluene sulfonamide (N‐PTSA) was used as the toughening agent in polyamide 6 (PA6) matrix. The PA6/N‐PTSA composites were prepared by melt compounding method. The PA6 composites were analyzed systematically from aspects of mechanical properties, thermal properties, crystal structures, and hydrogen bonds. There existed an obvious toughening effect in PA6 composite with the addition of 7 wt % of N‐PTSA. Meanwhile, the tensile strength of the composite was not reduced. The addition of N‐PTSA induced the formation of α‐form crystals, higher crystallinities and lower density of hydrogen bonds in the composites, which was beneficial to improvement of the mechanical properties. Based on the above results, the molecular structure model of toughening mechanism of N‐PTSA in PA6 was established. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46527.  相似文献   

3.
A synthetic ureido mixture prepared from the reaction of 4,4′‐diphenylmethane disocynanate (MDI) and cyclohexylamine without using any harmful organic solvents, has been used as a nucleating agent (PNA) for polyamide 6 (PA6). The effect of PNA on the crystallization and mechanical properties of PA6 has been studied by means of differential scanning calorimetry (DSC), polarized optical microscopy (POM), tensile test, melt flow index (MFI), and X‐ray diffraction (XRD). The results show that PNA is an effective nucleation agent for PA6. PNA affects the nucleation mechanism of PA6, and substantially accelerates the crystallization rate of PA6 and gives rise to smaller crystal size. In comparison with PA6, the crystallization temperature (Tc) of PA6/PNA (100/0.5) increases 21.3°C and the degree of sub‐cooling (ΔTc) decreases 23.7°C. Furthermore, because of the heterogeneous nucleation induced by PNA, the spherulites of PA6 become even and tiny based on POM observation. Polymorph transform has been obtained from XRD analysis. The virgin PA6 is free of γ‐phase crystals, presented as α‐phase crystals in this study, but γ‐phase crystal appears after the introduction of PNA. The mechanical and thermal properties of PA6 are obviously improved by the addition of PNA. POLYM. ENG. SCI., 55:2011–2017, 2015. © 2015 Society of Plastics Engineers  相似文献   

4.
A kind of hydrophilic nano‐SiO2 was applied to poly(ethylene terephthalate)/polyamide‐6 (PA‐6) blends. Melt‐blended composites were prepared at various component ratios and different nano‐SiO2 levels. Mechanical, morphological, dynamic mechanical, and thermal tests were carried out to characterize the properties, morphology, and compatibilization of the composites. Increased impact strength, tensile strength, and modulus were observed by adding nano‐SiO2 particles in the blends. The nano‐SiO2 particles were found to be preferentially dispersed in PA‐6, resulting in an increase of glass transition temperature and crystallization of PA‐6. The mechanism of morphology and properties changes was discussed based on the selective dispersion of nano‐SiO2 particles in the blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2288–2296, 2007  相似文献   

5.
The crystallization and melting behavior of neat nylon‐6 (PA6) and multi‐walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt‐compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs composites instead of a single exotherm (TCC, 1) for the neat matrix. The formation of the higher‐temperature exotherm TCC, 2 is closely related to the addition of MWNTs. X‐ray diffraction (XRD) results indicate that only the α‐phase crystalline structure is formed upon incorporating MWNTs into PA6 matrix, independently of the cooling rate and annealing conditions. These observations are significantly different from those for PA6 matrix, where the increase in cooling rate or decrease in annealing temperature results in the crystal transformation from α‐phase to γ‐phase. The crystallization behavior of PA6/MWNTs composites is also significantly different from those reported in PA6/nanoclay systems, probably due to the difference in nanofiller geometry between one‐dimensional MWNTs and two‐dimensional nanoclay platelets. The nucleation sites provided by carbon nanotubes seem to be favorable to the formation of thermodynamically stable α‐phase crystals of PA6. The dominant α‐phase crystals in PA6/MWNTs composites may play an important role in the remarkable enhancement of mechanical properties. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
A low molecular weight bisphenol‐A type epoxy resin was used as a reactive compatibilizer for poly(lactic acid) (PLA)/polyamide 610 (PA 610) biomass blends. To the best of our knowledge, this blend is the first biomass PA 610 blend in the literature. The epoxy functional groups could react with the terminal groups of both PLA and PA 610. An ester–amide interchange reaction led to a polyester–polyamide copolymer formation, and improved the compatibility of PLA and PA 610. The blends with epoxy resin showed an enhancement in the phase dispersion and interfacial adhesion compared with the blend without epoxy resin. The differential scanning calorimetry (DSC) analysis showed that the crystallization peak temperatures decreased with increasing epoxy content. The melting temperature of PA 610 decreased with the addition of PLA, but remained unchanged with increased compatibilizer dosages. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (Tg) of the blend, with the addition of 0.5 phr epoxy resin, slightly increased compared with that of neat PLA. However, the Tg of the blends remained unchanged with increasing epoxy resin content, and the higher content of epoxy resin in the blends resulted in improved mechanical properties and higher melt viscosity. The unnotched impact test showed that PA 610 could toughen PLA with the addition of epoxy resin. Moreover, the no‐break unnotched impact behavior was observed with the medium content of the compatibilizer, improving the notch sensitivity of PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2563–2571, 2013  相似文献   

7.
Nanocomposites of organic nano‐montmorillonite (nano‐OMMT)‐filled immiscible polyamide 6 (PA6)/polystyrene (PS) blends were prepared by three different processing methods. Masterbatch M1 of OMMT/PA6 and masterbatch M2 of OMMT/PS were prepared as separate masterbatchs by melt mixing with PA6 or PS, and then either mixed together or each mixed individually with appropriate amounts of PS or PA6, respectively. The effects of nano‐OMMT content and processing method on the structure, phase morphology, and mechanical properties of the PA6/PS/OMMT nanocomposites were investigated by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, and mechanical properties tests. The results showed that the nano‐OMMT by M1 and M2 masterbatches dispersed primarily as exfoliated platelets in the PA6 matrix in the final composites regardless of the method of preparation. A drastic decrease of dispersed PS phase size and a very homogeneous size distribution were observed with the addition of nano‐OMMT. The PA6/PS/OMMT nanocomposites prepared from the M2 displayed the smallest dispersed PS phase size and best distribution of OMMT. The improvement of the mechanical properties of the PA6/PS/OMMT nanocomposites was attributed to the enhanced compatibilization of the immiscible PA6/PS blends by using nano‐OMMT. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

8.
Infrared spectra of polyamide‐6 (PA6) with and without epoxidized natural rubber (ENR) are presented. The influence of ENR used as a compatibilizer on the morphologies, crystallizability, mechanical properties, and thermal behavior of the polyamide‐6/polyolefins (PO) blends are studied. The infrared spectra suggest that under normal processing conditions, the carboxyl end groups of PA6 could chemically react in situ with the epoxy groups of ENR, and ester groups are created. This means that the PA6‐ENR grafting copolymer could be obtained during processing. All the morphological characterizations and thermal analyses show that the compatibility of PA6/PO blends is obviously improved by ENR because the copolymer increases the interaction between PA6 and PO. It is also found that the toughness of PA6/PO blends increase significantly after using ENR, while the tensile strength and the softening temperature of PA6/PO blends have almost no change. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 398–403, 2003  相似文献   

9.
A new procedure for processing of epoxy/polyamide blend was explored via solution polymerization of ε‐caprolactam in N‐methylpyrollidone (NMP), which resulted in a suspension of nylon‐6 in solvent at room temperature. The suspension was blended with water based epoxy resin using mechanical stirring at room temperature. Several films were prepared from blend by varying the amount of nylon‐6 without curing agent. All films were fully characterized for thermal and dynamic mechanical properties using differential scanning calorimetry and dynamic mechanical analysis. The addition of nylon‐6 had a plasticizing effect on epoxy evident by decrease in glass transition temperature (Tg). The reaction between nylon‐6 and epoxy was studied using Fourier transform infrared spectroscopy by following the characteristic epoxy peak (914 cm?1). The growth of nylon‐6 crystals in epoxy matrix lead to spherulitic multiphase morphology, which was observed under scanning electron microscope. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3319–3327, 2013  相似文献   

10.
The ternary blends of polyamide 6/maleated ethylene‐propylene‐diene rubber/epoxy (PA6/EPDM‐g‐MA/EP) were prepared by a twin‐screw extruder with four different blending sequences. With the variation of blending sequence, the ternary blends presented distinct morphology and mechanical properties because of different interactions induced by various reactive orders. The addition of epoxy could increase the viscosity of the PA6 matrix, but a considerably larger size of the dispersed rubber phase was observed while first preblending PA6 with epoxy followed by blending a premix of PA6/EP with EDPM‐g‐MA, which was attested by rheological behaviors and SEM observations. It was probably ascribed to the fact that the great increase of the interfacial tension between the matrix and rubber phase aroused a great coalescence of rubber particles. The presence of epoxy in the rubber phase reduced the rubber's ability to cavitate so that the toughening efficiency of the EPDM‐g‐MA was decreased. The results of mechanical testing revealed that the optimum blending sequence to achieve balanced mechanical properties is blending PA6, EPDM‐g‐MA, and epoxy simultaneously in which the detrimental reactions might be effectively suppressed. In addition, thermal properties were investigated by TG and DSC, and the results showed that there was no distinct difference. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Maleic anhydride functionalized acrylonitrile–butadiene–styrene copolymer (ABS‐g‐MA) was used as an impact modifier of polyamide 6 (PA6). Epoxy resin was introduced into PA6/ABS‐g‐MA blends to further improve their properties. Notched Izod impact tests showed that the impact strength of PA6/ABS‐g‐MA could be improved from 253 to 800 J/m with the addition of epoxy resin when the ABS‐g‐MA content was set at 25 wt %. Differential scanning calorimetry results showed that the addition of epoxy resin made the crystallization temperature and melting temperature shift to lower temperatures; this indicated the decrease in the PA6 crystallization ability. Dynamic mechanical analysis testing showed that the addition of epoxy resin induced the glass‐transition temperature of PA6 and the styrene‐co‐acrylonitrile copolymer phase to shift to higher temperatures due to the chemical reactions between PA6, ABS‐g‐MA, and epoxy resin. The scanning electron microscopy results indicated that the ABS‐g‐MA copolymer dispersed into the PA6 matrix uniformly and that the phase morphology of the PA6/ABS‐g‐MA blends did not change with the addition of the epoxy resin. Transmission electron microscopy showed that the epoxy resin did not change the deformation mechanisms of the PA6/ABS‐g‐MA blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
This work deals with new flame retardant (FR) intumescent formulations for ethylene‐vinyl acetate copolymers (EVA) using charring polymers polyamide‐6 (PA‐6) and polyamide‐6 clay nanocomposite hybrid (PA‐6‐nano) as carbonization agents. Use of PA‐6 nano improved both the mechanical and fire properties of FR EVA‐based materials. The part played by the clay in the improvement of the FR performance was studied using FTIR and solid state NMR. It is shown that the clay allowed the thermal stabilization of a phosphorocarbonaceous structure in the intumescent char which increased the efficiency of the shield and, in addition, the formation of a ‘ceramic’ which can act as a protective barrier. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Nano‐silica particles were employed for enhancement of epoxy vacuum pressure impregnating (V.P.I.) resin. The influences of nano‐silica particles on the curing reaction, glass transition temperatures, dielectric behavior, and thermomechanical performances were investigated. The activation energy (E) for the epoxy curing reaction was calculated according to Kissinger, Ozawa, and Friedman‐Reich‐Lev methods. The glass transition temperatures were determined by means of differential scanning calorimetry, dynamic mechanical analysis, dc conduction, and ac dielectric loss analysis. Relationships between the glass transformation behaviors, the thermomechanical performances, and the dielectric behaviors were discussed. The influences of nano‐silica particles on the mechanical properties were also discussed in terms of non‐notched charpy impact strength and flexural strength. The morphologies were studied by means of SEM and TEM. The results indicated that nano‐silica particles could effectively increase both the toughness and strength of epoxy resin at low loadings (no more than 3 wt %) when nano‐silica particles could be well dispersed in epoxy matrix without any great aggregations. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
A new method to prepare low melting point polyamide‐6 (LPA6) by complex reaction of calcium chloride (CaCl2) and polyamide‐6 (PA6) in a co‐rotating twin screw extruder was reported. We employed a new rheological method to study the crystallization behavior of PA6/CaCl2 complex and the mechanism of confined crystallization of PA6. Compared with differential scanning calorimetry (DSC), this method was more capable of detecting crystalline information. What's more, it was also an effective method for studying mechanism of confined crystallization. From the results of X‐ray diffraction, DSC, infrared spectroscopy, rheology, and mechanical properties, the complex reaction of CaCl2 with the carbonyl oxygen atom in the amide group disrupted the intermolecular hydrogen bonding and confined the mobility of PA6 molecules. This could significantly reduce the crystallinity and melting temperature of PA6, and improve tensile strength and notched Izod impact strength. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41513.  相似文献   

15.
Methods of wide‐angle X‐ray analysis and transmission electron microscopy were performed to investigate structural and phase transformation occurring in polyamide‐6 (PA‐6) by combined solid‐phase processing including extrusion through a conical die (ED) and the following equal‐channel multiple‐angular extrusion (ECMAE). It was shown that high level of plastic and strength characteristics of extruded PA‐6 is determined by the formation of a duplex structure consisting of elongated disoriented fiber‐like entities and fragmented globular formations. Conservation of high values of plasticity of deformed PA‐6 is also controlled by the transition of the crystals of α‐form to the crystals of γ‐form with higher plasticity reserve. We have established rational technology parameters of PA‐6 processing by ED‐ECMAE processes (the deformation degree εED at ED, deformation intensity ΔΓ and the value of accumulated deformation εECMAE at ECMAE). POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Silane treatment has been applied to the preparation of nylon 6/nano‐SiO2 composites through in situ polymerization. The influence of such treatment on the reactivity of silica, polymerization of nylon 6, and the mechanical properties of the achieved composites has been studied. Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA) of silicas isolated from the composites have shown that the conversion of surface silanol groups to amino and epoxy groups did not cause a significant change in the reactivity of silica and that the percentage of silica surface grafting was around 15% for all treated and untreated silicas. End group analysis has shown that the presence of silica (pretreated or not) in the composite system resulted in the decrease of the average molecular weight of the polymer matrix. However, dynamic mechanical analysis and mechanical tests revealed that treating silica with silane improved the strength and toughness of the composite materials, while untreated silica improved their strength at the expense of toughness. This can be attributed to the existence of the flexible interlayer introduced by silane treatment. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 827–834, 2002; DOI 10.1002/app.10349  相似文献   

17.
Measurements are reported on the cure and physical properties of an epoxy resin created using a functionalised nanosilica filler. The filled bisphenol A epoxy (Nanopox A410) contained 40 wt% silica nanoparticles and was blended with two bisphenol A resins of molecular weights of 355 and 1075 g mol?1, respectively. Cure was achieved using 3,3‐diaminodiphenylsulfone. The functionality of the mixture containing the epoxy nanoparticles was determined using NMR analysis. Cure times showed a progressive decrease with increasing silica level. Dynamic mechanical thermal analysis showed a decrease in the value of the glass transition temperature (Tg) with increasing silica level. Tg was further studied using differential scanning calorimetry. The ability of the nanosilica to create a stable network structure was demonstrated by the variation of the high‐temperature modulus with silica composition. Thermomechanical analysis carried out below and above Tg showed a progressive decrease in the expansion coefficients with increasing silica level, indicating the effectiveness of the functionalised silica nanoparticles in forming a network. The network formed during cure in the nano‐modified epoxy is unable to undergo the densification possible in the pure resin material and explains the observed lowering of Tg with increasing nanosilica content. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
A polyamide 6 (PA 6)/silica nanocomposite was obtained through a novel method, in situ polymerization, by first suspending silica particles in ϵ-caproamide under stirring and then polymerizing this mixture at high temperature under a nitrogen atmosphere. The silicas were premodified with aminobutyric acid prior to the polymerization. The effects of the addition of unmodified and modified silicas on the dispersion, interfacial adhesion, isothermal crystallization, and mechanical properties of PA 6 nanocomposites were investigated by using scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, and mechanical tests, respectively. The results show that the silicas dispersed homogeneously in the PA 6 matrix. The addition of silicas increases the glass transition temperature and crystallization rate of PA 6. The mechanical properties such as impact strength, tensile strength, and elongation at break of the PA 6/modified silica nanocomposites showed a tendency to increase and decrease with increase of the silica content and have maximum values at 5% silica content, whereas those of the PA 6/unmodified silica system decreased gradually. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 355–361, 1998  相似文献   

19.
Blends of polyamide‐6 (PA6) or postindustry polyamide‐6 (piPA6) and high‐density polyethylene (HDPE) or recycled high‐density polyethylene (rHDPE) were processed in single and twin‐screw extruders. The use of rHDPE in the blends promotes a significant decrease of size domains and improvement in the mechanical properties. The thermal stability was also slightly improved compared with PA6 and HDPE blends. The Molau test exhibited a stable emulsion in formic acid, which can be attributed to the formation of an interfacial copolymer involving polar amino end groups of PA6 and the rHDPE, respectively. These results indicate that recycled polymers can be used in the production of polymer blends with improved properties. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers.  相似文献   

20.
This study examines the selective dispersion of nano‐SiO2 in polystyrene (PS) and polyamide 6 (PA6) blends. With the coupling assistance of 3‐methacryloylpropyl trimethoxysilane (MPS), nano‐SiO2 surfaces are grafted with PS chains of different molecular weights (SiO2–MPS–PS) or reactive random copolymer of styrene (St) and 3‐isopropenyl‐α,α′‐dimethylbenzene isocyanate (TMI) to produce SiO2–MPS–P(St–co–TMI). The isocyanate groups of the reactive copolymer can react with the terminal group of the PA6 to form a graft copolymer, which helps in controlling the location of nano‐SiO2 between the PS and PA6 phases. Field‐emission scanning electron microscopy imaging combined with the rheological method was used to investigate the location and dispersion of nano‐SiO2, as well as the morphology of the PS/PA6 blends, at low nano‐SiO2 loading. Compared with pristine SiO2, the modified SiO2 with different chain lengths adjusted the PA6 phase with refined size and narrow size distribution because of the strong interaction with both phases. The SiO2–MPS–PS with appropriate length is the most effective. The use of nano‐SiO2 along with the reactive compatibilizer provides synergistic effects for improving the compatibilization of PS/PA6 blends. POLYM. ENG. SCI., 57:1301–1310, 2017. © 2017 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号