首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A low‐complexity turbo detection scheme is proposed for single‐carrier multiple‐input multiple‐output (MIMO) underwater acoustic (UWA) communications using low‐density parity‐check (LDPC) channel coding. The low complexity of the proposed detection algorithm is achieved in two aspects: first, the frequency‐domain equalization technique is adopted, and it maintains a low complexity irrespective of the highly dispersive UWA channels; second, the computation of the soft equalizer output, in the form of extrinsic log‐likelihood ratio, is performed with an approximating method, which further reduces the complexity. Moreover, attributed to the LDPC decoding, the turbo detection converges within only a few iterations. The proposed turbo detection scheme has been used for processing real‐world data collected in two different undersea trials: WHOI09 and ACOMM09. Experimental results show that it provides robust detection for MIMO UWA communications with different modulations and different symbol rates, at different transmission ranges. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Turbo均衡是一种通过反复均衡和信道译码来提高接收性能的迭代接收机算法。通常的Turbo均衡算法采用均衡与软输出译码的迭代运算,由于均衡和译码的重复计算,使得复杂度大大提高。文中提出了2种降低复杂度的Turbo均衡器:第一种采用软判决维特比译码,第二种采用软输入硬输出的维特比译码。通过仿真表明,这2种算法在几乎没有损失接收性能的情况下,大大降低了计算复杂度,并且第二种的性能要好于第一种。  相似文献   

3.
We propose a very simple and efficient soft linear multi‐input multi‐output (MIMO) detection scheme. The detection process is divided into two separate problems. The proposed scheme first detects MIMO symbols using conventional linear detection methods and produces soft bit information using a simple soft demapping method. Next, we refine the soft information by accounting for uneven post‐detection noise variance across MIMO layers. From the simulation result investigated in this paper, we first emphasize that powerful channel coding may suppress the differences of diversity gains among various MIMO detection schemes. This implies that the channel decoding operation may not be transparent to performance gain that resulted from MIMO detection process. The proposed scheme concentrates on accurate estimation of soft post‐MIMO detected information in a very simple manner, rather than concentrating on a complex MIMO detection scheme prior to decoding process. In combination with turbo codes, the proposed scheme produces comparable performance to maximum likelihood detection, even with the simplest scheme such as zero forcing detection, with drastically reduced complexity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The bit error rate (BER) performance of a turbo‐coded code‐division multiple‐access (CDMA) system operating in a satellite channel is analysed and simulated. The system performance is compared for various constituent decoders, including maximum a posteriori probability (MAP) and Max‐Log‐MAP algorithms, and the soft‐output Viterbi algorithm. The simulation results indicate that the Max‐Log‐MAP algorithm is the most promising among these three algorithms in overall terms of performance and complexity. It is also shown that, for fixed code rate, the BER performance is improved substantially by increasing the number of iterations in the turbo decoder, or by increasing the interleaver length in the turbo encoder. The results in this paper are of interest in CDMA‐based satellite communications applications. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Turbo codes are extensively used in current communications standards and have a promising outlook for future generations. The advantages of software defined radio, especially dynamic reconfiguration, make it very attractive in this multi‐standard scenario. However, the complex and power consuming implementation of the maximum a posteriori (MAP) algorithm, employed by turbo decoders, sets hurdles to this goal. This work introduces an ASIP architecture for the MAP algorithm, based on a dual‐clustered VLIW processor. It displays the good performance of application specific designs along with the versatility of processors, which makes it compliant with leading edge standards. The machine deals with multi‐operand instructions in an innovative way, the fetching and assertion of data is serialized and the addressing is automatized and transparent for the programmer. The performance‐area trade‐off of the proposed architecture achieves a throughput of 8 cycles per symbol with very low power dissipation.  相似文献   

6.
A channel‐estimate‐based frequency‐domain equalization (CE‐FDE) scheme for wireless broadband single‐carrier communications over time‐varying frequency‐selective fading channels is proposed. Adaptive updating of the FDE coefficients are based on the timely estimate of channel impulse response (CIR) to avoid error propagation that is a major source of performance degradation in adaptive equalizers using least mean square (LMS) or recursive least square (RLS) algorithms. Various time‐domain and frequency‐domain techniques for initial channel estimation and adaptive updating are discussed and evaluated in terms of performance and complexity. Performance of uncoded and coded systems using the proposed CE‐FDE with diversity combining in different time‐varying, multi‐path fading channels is evaluated. Analytical and simulation results show the good performance of the proposed scheme suitable for broadband wireless communications. For channels with high‐Doppler frequency, diversity combining substantially improves the system performance. For channels with sparse multi‐path propagation, a tap‐selection strategy used with the CE‐FDE systems can significantly reduce the complexity without sacrificing the performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
本文在研究Turbo 码反向SOVA(Soft-Output ViterbiAlgorithm )译码性能的基础上,提出了一种同时利用正向和反向SOVA译码软输出信息的基于SOVA 的改进译码结构及其相应的软输出修正公式。计算机模拟结果表明,所提出的改进方案与传统的SOVA算法相比,其译码性能有明显的改善,并略优于Max-Log-MAP的性能  相似文献   

8.
Sampling-based soft equalization for frequency-selective MIMO channels   总被引:1,自引:0,他引:1  
We consider the problem of channel equalization in broadband wireless multiple-input multiple-output (MIMO) systems over frequency-selective fading channels, based on the sequential Monte Carlo (SMC) sampling techniques for Bayesian inference. Built on the technique of importance sampling, the stochastic sampler generates weighted random MIMO symbol samples and uses resampling to rejuvenate the sample streams; whereas the deterministic sampler, a heuristic modification of the stochastic counterpart, recursively performs exploration and selection steps in a greedy manner in both space and time domains. Such a space-time sampling scheme is very effective in combating both intersymbol interference and cochannel interference caused by frequency-selective channel and multiple transmit and receiver antennas. The proposed sampling-based MIMO equalizers significantly outperform the decision-feedback MIMO equalizers with comparable computational complexity. More importantly, being soft-input soft-output in nature, these sampling-based MIMO equalizers can be employed as the first-stage soft demodulator in a turbo receiver for coded broadband MIMO systems. Such a turbo receiver successively improves the receiver performance through iterative equalization, channel re-estimation, and channel decoding. Finally, computer simulation results are provided to demonstrate the performance of the proposed sampling-based soft MIMO equalizers in both uncoded and turbo coded systems.  相似文献   

9.
This paper addresses the issue of iterative space–time equalization for multiple-input–multiple-output (MIMO) frequency-selective fading channels. A new soft equalization concept based on successive interference cancellation (SIC) is introduced for a space–time bit-interleaved coded modulation (STBICM) transmission. The proposed equalizer allows us to separate intersymbol interference (ISI) and multiantenna interference (MAI) functions. Soft ISI is successively suppressed using a low-complexity suboptimum minimum mean square error (MMSE) criterion. The decoupling of ISI and MAI offers more flexibility in the design of the whole space–time equalizer. Different multiantenna detection criteria can be considered, ranging from simple detectors to the optimal maximum a posteriori (MAP) criterion. In particular, we introduce two soft equalizers, which are called SIC/SIC and SIC/MAP, and we show that they can provide a good performance-to-complexity tradeoff for many system configurations, as compared with other turbo equalization schemes. This paper also introduces an MMSE-based iterative channel state information (CSI) estimation algorithm and shows that attractive performance can be achieved when the proposed soft SIC space–time equalizer iterates with the MMSE-based CSI estimator.   相似文献   

10.
Turbo equalization: principles and new results   总被引:2,自引:0,他引:2  
We study the turbo equalization approach to coded data transmission over channels with intersymbol interference. In the original system invented by Douillard et al. (1995), the data are protected by a convolutional code and the receiver consists of two trellis-based detectors, one for the channel (the equalizer) and one for the code (the decoder). It has been shown that iterating equalization and decoding tasks can yield tremendous improvements in bit error rate. We introduce new approaches to combining equalization based on linear filtering, with decoding.. Through simulation and analytical results, we show that the performance of the new approaches is similar to the trellis-based receiver, while providing large savings in computational complexity. Moreover, this paper provides an overview of the design alternatives for turbo equalization with given system parameters, such as the channel response or the signal-to-noise ratio  相似文献   

11.
Minimum mean squared error equalization using a priori information   总被引:11,自引:0,他引:11  
A number of important advances have been made in the area of joint equalization and decoding of data transmitted over intersymbol interference (ISI) channels. Turbo equalization is an iterative approach to this problem, in which a maximum a posteriori probability (MAP) equalizer and a MAP decoder exchange soft information in the form of prior probabilities over the transmitted symbols. A number of reduced-complexity methods for turbo equalization have been introduced in which MAP equalization is replaced with suboptimal, low-complexity approaches. We explore a number of low-complexity soft-input/soft-output (SISO) equalization algorithms based on the minimum mean square error (MMSE) criterion. This includes the extension of existing approaches to general signal constellations and the derivation of a novel approach requiring less complexity than the MMSE-optimal solution. All approaches are qualitatively analyzed by observing the mean-square error averaged over a sequence of equalized data. We show that for the turbo equalization application, the MMSE-based SISO equalizers perform well compared with a MAP equalizer while providing a tremendous complexity reduction  相似文献   

12.
13.
Communication channels that involve both error-control coding and multiple-access signaling are of increasing interest in applications such as cellular telephony, wireless computer networks, and broadband local access. Optimal data detection and decoding in such channels generally require a level of computational complexity that is prohibitive for these types of applications. Turbo multiuser detection (MUD) addresses this problem by applying turbo principle of iteration among constituent decision algorithms, with intermediate exchanges of soft information about tentative decisions. This principle is applied in this paper by considering MUD and error-control decoding as the two constituent decision algorithms. The resulting iteration between soft MUD and soft channel decoding yields good results. This article reviews this area outlining both the basic principles involved and the basis for low-complexity turbo multiuser detectors that require minimal increased complexity over that of the standard channel decoder.  相似文献   

14.
The layered maximum a posteriori (L-MAP) algorithm has been proposed to detect signals under frequency selective fading multiple input multiple output (MIMO) channels. Compared to the optimum MAP detector, the L-MAP algorithm can efficiently identify signal bits, and the complexity grows linearly with the number of input antennas. The basic idea of L-MAP is to operate on each input sub-stream with an optimum MAP sequential detector separately by assuming the other streams are Gaussian noise. The soft output can also be forwarded to outer channel decoder for iterative decoding. Simulation results show that the proposed method can converge with a small number of iterations under different channel conditions and outperforms other sub-optimum detectors for rank-deficient channels.  相似文献   

15.
In this paper, we investigate multi‐group linear turbo equalization using single antenna interference cancellation (SAIC) techniques to mitigate the intercell interference for multi‐carrier code division multiple access (MC‐CDMA) cellular systems. It is important for the mobile station to mitigate the intercell interference as the performance of the users close to cell edge is mainly degraded by the intercell interference. The complexity of the proposed iterative detector and receiver is low as the one‐tap minimum mean square error (MMSE) equalizer is employed for mitigating the intracell interference, while a simple group interference canceller is used for suppressing the intercell interference. Simulation results show that the proposed iterative detector and receiver can mitigate the intercell interference effectively through iterations for both uncoded and coded signals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Single‐carrier frequency division multiple access (SC‐FDMA) systems with space frequency block coding (SFBC) transmissions achieve both spatial and frequency diversity gains in wireless communications. However, SFBC SC‐FDMA schemes using linear detectors suffer from severe performance deterioration because of noise enhancement propagation and additive noise presence in the detected output. Both issues are similar to inter‐symbol‐interference (ISI). Traditionally, SC‐FDMA system decision feedback equalizer (DFE) is often used to eliminate ISI caused by multipath propagation. This article proposes frequency domain turbo equalization based on nonlinear multiuser detection for uplink SFBC SC‐FDMA transmission systems. The presented iterative receiver performs equalization with soft decisions feedback for ISI mitigation. Its coefficients are derived using minimum mean squared error criteria. The receiver configuration study is Alamouti's SFBC with two transmit and two receive antennas. New receiver approach is compared with the recently proposed suboptimal linear detector for SFBC SC‐FDMA systems. Simulation results confirm that the performance of the proposed iterative detection outperforms conventional detection techniques. After a few iterations, bit‐error‐rate performance of the proposed receiver design is closely to the matched filter bound. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the problem of equalization of linear multi‐input multi‐output (MIMO) channels is addressed. Using an algebraic approach, we propose a unifying formalism for the linear time‐invariant/time‐varying channel equalization problem. A new definition called algebraic equalization is presented. This allows us to derive the necessary and sufficient condition on the existence of equalizer. We describe the received signals in terms of Kalman model. This then provides us with a test of channel equalization, which may be performed formally in terms of ranks of some related matrices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
We consider blurring of binary images and corruption by ambient noise occuring on two-dimensional storage channels. Since coding is generally used in such systems, the deconvolution problem can be treated jointly with decoding. Several methods have been proposed in the literature under the name of turbo equalization to mitigate the degradation introduced by such channels. However, the problem of blur identification has rarely been addressed previously. In this paper, we propose a technique for estimating the 2D channel coefficients, along with the variance of the ambient noise. The proposed estimation algorithm is adaptive and performed jointly with turbo equalization, so as to limit the number of known pilot symbols needed to bootstrap the channel estimator. Interestingly, we found that the computational complexity of the proposed joint channel estimation and turbo equalization method depends heavily on the sensitivity of existing turbo equalization methods to 2D channel parameter mismatch.  相似文献   

19.
This letter presents a new soft feedback interference cancellation (SFIC) based equalizer suitable for iterative receivers applying turbo equalization. SFIC offers a very low computational complexity depending only linearly on the channel memory length. Despite its low complexity, SFIC shows a very good BER performance. Simulation results for the severely intersymbol interference distorted Proakis C channel show, that our approach performs within 0.5 dB to the powerful turbo equalization scheme based on MMSE linear filtering with time-varying coefficients and fails the mathematical optimum maximum a-posteriori (MAP) equalizer only by 1.2 dB.  相似文献   

20.
1IntroductionTowards wireless systems Beyondthe3G(B3G),it isa great challenge for the physical layer to support high-speed transmissioninthe mobile environment to providecomfortable Internet access.Multiple Input MultipleOutput(MI MO)technique is effectiv…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号