首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of uncompatibilized and compatibilized PP/PA‐6 (70/30 wt %) with PP‐g‐MA under accelerated UV light was investigated using Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, melt flow index (MFI) tester, tensile test, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FTIR analysis of the structure of the compatibilized and uncompatibilized blends after exposure to UV light showed the formation of photoproducts corresponding to both components. The MFI and mechanical results obtained revealed that photooxidation started primarily in PA‐6 rather than PP. In addition, the uncompatibilized blends exhibited a higher degradation rate compared to neat polymers for long exposure time, and the addition of PP‐g‐MA increased slightly their ageing rate in accordance with TGA data. Further, DSC analysis showed an increase in the crystallinity index and a decrease in the melting temperature of PP and PA‐6 after UV exposure either as neat polymers or as blend components. SEM micrographs of the cryo‐fractured surfaces of the samples illustrated the formation of cracks and fractures after UV irradiation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41722.  相似文献   

2.
Pretreatment of the sisal fiber (SF) grafting with L‐lactide (LA) monomer via a ring‐opening polymerization catalyzed by a Sn(II)‐based catalyst was performed to improve the interfacial adhesion between SF and poly (lactic acid) (PLA). Biocomposites from LA‐grafted SF (SF‐g‐LA) and PLA were prepared by compression molding with fiber weight fraction of 10, 20, 30, and 40%, and then were investigated in contrast with alkali‐treated sisal fiber (ASF) reinforced PLA composites and untreated SF reinforced PLA composites. PLA composites reinforced by half‐and‐half SF‐g‐LA/untreated SF (half SF‐g‐LA) were prepared and studied as well, considering the disadvantages of SF‐g‐LA. The results showed that both the tensile properties and flexural properties of the SF‐g‐LA reinforced PLA composites were improved noticeably as the introduction of SF‐g‐LA, compared with pure PLA, untreated SF reinforced PLA composites and ASF reinforced PLA composites. The mechanical properties of the half SF‐g‐LA reinforced PLA composites were not worse, even better in some aspects, than the SF‐g‐LA reinforced PLA composites. Fourier transform infrared analysis and differential scanning calorimetry analysis exhibited that both the chemical composition and crystal structure of the SFs changed after LA grafting. In addition, the fracture surface morphology of the composites was studied by scanning electron microscopy. The morphological studies demonstrated that a better adhesion between LA‐grafted SF and PLA matrix was achieved. POLYM. COMPOS., 37:802–809, 2016. © 2014 Society of Plastics Engineers  相似文献   

3.
Mechanical properties of poly(ε‐caprolactone) (PCL) and polylactic acid (PLA) blend reinforced with Dura and Tenera palm press fibers were studied. Dicumyl peroxide (DCP) was used as compatibilizer in the blend composites. Fourier transforms infrared spectrophotometer (FTIR) and field emission scanning electron microscope (FESEM) was used to study the effect of treatment on the fibers and fiber/matrix adhesion respectively. The uncompatibilized blend composites exhibited higher Young's modulus than the compatibilized blend composites. Impact strength of compatibilized blend composites of Tenera fibers (FM) increased by 161% at 10 wt% fiber load more than the uncompatibilized blend composites at same fiber load. The Dura fibers (FN) enhanced impact strength by 133% at 10 wt% fiber load. Tensile strength increased by 40% for compatibilized FM blend composites. In conclusion, it was observed that DCP incorporation resulted in good interfacial adhesion as revealed by the FESEM micrographs and evidenced in the improved mechanical properties. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
This paper deals with (maleic anhydride)‐grafted polypropylene (MAH‐g‐PP) and wood flour reinforcement and their effects on the dynamic, mechanical, morphological, and rheological properties of waste polypropylene (PP) composites. MAH‐g‐PP was used as a compatibilizer to improve the physical interaction between the filler and matrix. The composites were prepared by using a twin‐screw extruder followed by injection molding. Thermal stability and mechanical properties of the compatibilized system increased as compared to their values for the uncompatibilized system. Also, nearly 60% and 30% loss was found for mechanical properties and weight loss, respectively, in a biodegradability study. J. VINYL ADDIT. TECHNOL., 20:24–30, 2014. © 2014 Society of Plastics Engineers  相似文献   

5.
Waste poly(ethylene terephthalate) (W‐PET)/acrylonitrile‐butadiene‐styrene (ABS) blends were prepared with a variety of compositions at several rotor speeds in an internal mixer, replacing ABS with different maleated ABS (ABS‐g‐MA) samples in compatibilized blends. A Box–Behnken model for three variables, with three levels, was chosen for the experimental design. ABS‐g‐MA‐based samples exhibited finer particles with a more uniform particle size distribution than ABS‐based ones, as a consequence of the compatibilizing process. Rheological results implied a greater elastic nature for compatibilized blends which increased in the presence of more ABS content; the same trend was observed for complex viscosity. With increasing ABS‐g‐MA or MA concentration, more shear thinning behavior was observed similar to that of ABS; whereas the uncompatibilized blends showed Newtonian behavior like that of W‐PET. The observed shifting in TgW‐PET and TgABS obtained from dynamic mechanical thermal analysis confirmed the good compatibility in W‐PET/ABS‐g‐MA blends in contrast with that in ordinary W‐PET/ABS blends. The mechanical properties were measured and modeled versus the various factors considered in a response surface methodology. The experimental data found a good fit with the obtained equation models. The mechanical properties of the compatibilized blends showed a large positive deviation from the mixing rule, while the uncompatibilized samples had lower properties, even compared to those predicted by the mixing rule. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

6.
The investigation of the economical use of lignocellulose waste, which is one of the environmental problems facing nations, is ongoing. In this study, waste cardboard paper fiber reinforcing polypropylene (PP) composites was developed. In order to modify the PP matrix maleated PP (MA‐g‐PP) a 5 wt% and a grafting rate of 1 and 2 wt% was used as a compatibilizer. The effects of fiber and compatibilizer content as well as graft content are evaluated by mechanical, thermal property measurements, and scanning electron microscopy (SEM). The compatibilizer improved all mechanical properties significantly. Thus, the tensile strength of MA‐g‐PP‐containing composites increases compared to PP/cardboard composites paper content increases. However, the tensile modulus of a PP‐based composite increases with an increase in paper fiber with the compatibilizer having little effect. SEM revealed that the addition of MA‐g‐PP generates strong interactions between a PP matrix and paper fibers. However, the addition of the MA‐g‐PP compatibilizing agent gives a significant improvement on the crystallization of the composites, whereas the compatibilized PP/old corrugated cardboard (OCC) composites have higher crystallinity (Xc) than uncompatibilized PP/OCC composites. The MA‐g‐PP also diminished the water absorption in the composites. J. VINYL ADDIT. TECHNOL., 22:231–238, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
Biodegradable polycaprolactone (PCL) was melt‐compounded in a Werner & Pfleiderer twin‐screw extruder (ZSK25) together with wood flour (WF) and lignin with maleic anhydride‐grafted polycaprolactone (PCL‐g‐MA) used as a compatibilizer. The grafting of maleic anhydride onto PCL was achieved with reactive extrusion in the presence of 2,5‐dimethyl‐2,5‐di‐(t‐butylperoxy)hexane as an initiator. The graft copolymers were analyzed with size exclusion chromatography and titration. As a function of the initiator and maleic anhydride addition, the grafted maleic anhydride content varied from 1.4 to 3.1 wt %. Compounds compatibilized with PCL‐g‐MA exhibited improved mechanical properties: a compatibilized PCL compound containing 40 wt % WF gave a Young's modulus of 2300 MPa with respect to 400 MPa for neat PCL and a 100% increase in yield stress. The content of WF, lignin, and PCL‐g‐MA was varied systematically to examine stress–strain and impact behavior. Low contents of grafted maleic anhydride and PCL‐g‐MA were required to improve both mechanical properties and interfacial adhesion. Biodegradation was investigated. Lignin addition was found to retard biodegradation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1972–1984, 2001  相似文献   

8.
In this study, the use of PLA‐g‐MA is investigated as a potential method for improving interfacial adhesion between agricultural residues and PLA, with the goal of enhancing mechanical properties. Compatibilization was achieved by using PLA‐g‐MA prepared via reactive extrusion. Green renewable and compatibilized PLA/wheat straw composites were extruded and injection‐molded. Addition of 3 and 5 phr PLA‐g‐MA to the composites resulted in significant improvements in tensile strength (20%) and flexural strength (14%) of the composites, matching that of the neat polymer. The observed improvement in strength was attributed to the good interfacial adhesion between the fiber and matrix.

  相似文献   


9.
This article deals with the feasibility of using recycled corrugated paper board (rPF) as the reinforcing material for recycled plastics. The composites of recycled polypropylene (rPP) and rPF were prepared by extrusion compounding and injection molding, and the rPP/rPF composites compatibilized by maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted ethylene‐1‐octene copolymer (POE‐g‐MA), and maleic anhydride grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA) were also prepared. The crystallization and melting behavior, mechanical properties, thermal stability, and morphology of these composites were studied. The results indicated that rPF promoted the crystallization, enhanced the strength and toughness of rPP/rPF composites to some extent while decreased thermal stability at the same time. PP‐g‐MA and POE‐g‐MA improved the dispersion and interface adhesion of rPF, and further upgraded the mechanical properties and vicat softening temperatures. Among these compatibilizers, PP‐g‐MA was most favorable to the strength improvement while POE‐g‐MA was most favorable to the toughness improvement. As for SEBS‐g‐MA, it had no obvious modification effect. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Thermoplasticized starch (TPS) filled poly(lactic acid) (PLA) blends are usually found to have low mechanical properties due to poor properties of TPS and inadequate adhesion between the TPS and PLA. The purpose of this study was to investigate the reinforcing effect of wood fibers (WF) on the mechanical properties of TPS/PLA blends. In order to improve the compatibility of wood with TPS/PLA blends, maleic anhydride grafted PLA (MA‐g‐PLA) copolymer was synthesized and used. TPS, TPS/PLA blends, and WF reinforced TPS/PLA composites were prepared by twin‐screw extrusion and injection molded. Scanning electron microscope and crystallinity studies indicated thermoplasticity in starch. WF at two different weight proportions, that is, 20% and 40% with respect to TPS content were taken and MA‐g‐PLA at 10% to the total weight was chosen to study the effect on mechanical properties. At 20% WF and 10% MA‐g‐PLA, the tensile strength exhibited 86% improvement and flexural strength exhibited about 106% improvement over TPS/PLA blends. Increasing WF content to 40% further enhanced tensile strength by 128% and flexural strength by 180% with respect to TPS/PLA blends. Thermal behavior of blends and composites was analyzed using dynamic mechanical analysis and thermogravimetric analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46118.  相似文献   

11.
Many authors have reported on the property enhancements possible by compounding high density polyethylene (HDPE) with fillers to produce composites. It is accepted that polyethylene combined with materials such as nanoclay or wood flour will not yield favorable properties unless a compatibilizing material is used to form a link. In this work, compatibilized HDPE was produced by grafting maleic anhydride (MA) to its backbone in a twin screw extruder using a peroxide initiated reactive process. Fourier transform infrared spectroscopy (FTIR) was used to examine the effects of varying peroxide and MA levels on the grafting percentage and it was found that a high percentage could be achieved. The gel content of each HDPE‐g‐MA batch was determined and twin bore rheometry analysis was carried out to examine the effects of crosslinking and MA grafting on the melt viscosity. These HDPE‐g‐MA compatibilizers were subsequently compounded with nanoclay and wood flour to produce composites. The composite materials were tested using a three point bending apparatus to determine the flexural modulus and strength and were shown to have favorable mechanical properties when compared with composites containing no compatibilizer. X‐ray diffraction (XRD) was used to examine the effects of grafted MA content on the intercalation and exfoliation levels of nanoclay composites. The results from XRD scans showed that increased intercalation in polymer nanoclay composites was achieved by increasing the grafted MA content. This was confirmed using a scanning electron microscope, where images produced showed increased levels of dispersion and reductions in nanoclay agglomerates. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   

13.
Blends consisting of high‐impact polystyrene (HIPS) as the matrix and polyamide 1010 (PA1010) as the dispersed phase were prepared by mixing. The grafting copolymers of HIPS and maleic anhydride (MA), the compatibilizer precursors of the blends, were synthesized. The contents of the MA in the grafting copolymers are 4.7 wt % and 1.6 wt %, and were assigned as HAM and LMA, respectively. Different blend morphologies were observed by scanning electron microscopy (SEM); the domain size of the PA1010 dispersed phase in the HIPS matrix of compatibilized blends decreased comparing with that of uncompatibilized blends. For the blend with 25 wt % HIPS‐g‐MA component, the Tc of PA1010 shifts towards lower temperature, from 178 to 83°C. It is found that HIPS‐g‐MA used as the third component has profound effect on the mechanical properties of the resulting blends. This behavior has been attributed to the chemical reaction taking place in situ during the mixing between the two components of PA1010 and HIPS‐g‐MA. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 799–806, 2000  相似文献   

14.
Rice husk flour (RHF) biocomposites based on uncompatibilized and compatibilized recycled high density polyethylene/recycled polyethylene terephthalate (rHDPE/rPET) with ethylene‐glycidyl methacrylate (E‐GMA) copolymer were prepared through a two‐step extrusion and hot pressing with fiber loadings of 40, 60, and 80 wt %. Results showed that tensile and flexural properties increased. However, the elongation to break and impact strength decreased as the RHF loading increased. Compatibilizing polymer blend matrices can further enhance the mechanical properties. Water absorption (WA) test were examined in distilled and seawater. It is interesting to note that for composites made from uncompatibilized matrix, the calculated D and KSR were lower in seawater, but for the compatibilized matrix composites, the D and KSR obtained were generally lower in distilled water. However, compatibilization of rHDPE/rPET has been markedly reduced the WA and thickness swelling. Scanning electron microscope analysis of the compatibilized matrix composites confirmed the improved interfacial bonding of matrix–matrix and filler–matrix phases. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41494.  相似文献   

15.
Nanocomposites composed of organoclay and thermoplastic vulcanizates (TPVs) based on uncompatibilized or compatibilized polypropylene (PP)/ethylene–propylene–diene rubber (EPDM) blends were prepared in this study. The morphology of the nanocomposites was studied with wide‐angle X‐ray diffraction and transmission electron microscopy, which suggested that the addition of the compatibilizer played a key role in determining the morphology of the composites because of their interaction with the clay surface. Scanning electron microscopy study indicated the changes in the morphology of the rubber particles. Dynamic mechanical analysis was also applied to the analysis of these phenomena. Moreover, for nanocomposites with uncompatibilized PP/EPDM blends as the matrix, the samples showed tensile enhancement compared with neat TPV. Although the addition of the compatibilizer changed tensile properties of the composites in a rather different trend, the tensile modulus increased dramatically when the compatibilizer was added. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40618.  相似文献   

16.
In this work, uncompatibilized and compatibilized blends of low density polyethylene (LDPE) and poly(lactic acid) (PLA) were subjected to several investigations: Fourier transform infrared (FTIR) spectroscopy, morphological analysis and mechanical testing (tensile, impact, microhardness). The copolymer (ethylene-co-glycidyl methacrylate) (EGMA) was used as compatibilizer. The percentages of PLA in LDPE/PLA samples ranged from 0 to 100 wt% while the EGMA was added to the blend 60/40 (LDPE/PLA) at concentrations of 2, 5, 7, 10, 15 and 20 parts per hundred (phr). FTIR analysis showed the absence of any interaction between LDPE and PLA, but after addition of compatibilizer, reactions between epoxy groups of EGMA and carboxylic or hydroxyl groups of PLA were confirmed. Tensile and impact tests revealed a loss of ductility of LDPE with the incorporation of PLA, except for the composition 80/20 (LDPE/PLA). However, the addition of 15 phr of EGMA led to the maximum increase in the elongation-at-break (about three times the value of uncompatibilized blend) and in the impact strength, but a marginal improvement was observed for tensile strength. SEM micrographs confirmed that the enhancement of mechanical properties is due to the improvement of the interfacial adhesion between different phases owing to the presence of EGMA. The microhardness values of the different blends (uncompatibilized or compatibilized) were in good agreement with the macroscopic mechanical properties (tensile and impact strengths).  相似文献   

17.
In the present work, different compatibilizers, namely polyethylene‐graft‐maleic anhydride (PE‐g‐MA), polypropylene‐graft‐maleic anhydride (PP‐g‐MA), and polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene‐graft‐maleic anhydride (SEBS‐g‐MA) were used on green composites derived from biobased polyethylene and peanut shell (PNS) flour to improve particle–polymer interaction. Composites of high‐density polyethylene/peanut shell powder (HDPE/PNS) with 10 wt % PNS flour were compatibilized with 3 wt % of the abovementioned compatibilizers. As per the results, PP‐g‐MA copolymer lead to best optimized properties as evidenced by mechanical characterization. In addition, best particle–matrix interface interactions with PP‐g‐MA were observed by scanning electron microscopy (SEM). Subsequently HDPE/PNS composites with varying PNS flour content in the 5–30 wt % range with PP‐g‐MA compatibilizer were obtained by melt extrusion and compounding followed by injection molding and were characterized by mechanical, thermal, and morphological techniques. The results showed that PNS powder, leads to an increase in mechanical resistant properties (mainly, flexural modulus, and strength) while a decrease in mechanical ductile properties, that is, elongation at break and impact absorbed energy is observed with increasing PNS flour content. Furthermore, PNS flour provides an increase in thermal stability due to the natural antioxidant properties of PNS. In particular, composites containing 30 wt % PNS powder present a flexural strength 24% and a flexural modulus 72% higher than the unfilled polyethylene and the thermo‐oxidative onset degradation temperature is increased from 232 °C up to 254 °C thus indicating a marked thermal stabilization effect. Resultant composites can show a great deal of potential as base materials for wood plastic composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43940.  相似文献   

18.
Maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MA) toughened polyamide 6 (PA6)/organoclay (OMMT) nanocomposites were prepared by melt blending. The role of OMMT in the morphology of the ternary composites and the relationship between the morphology and mechanical properties were investigated by varying the blending sequence. The PA6/EPDM‐g‐MA/OMMT (80/20/4) composites prepared by four different blending sequences presented distinct morphology and mechanical properties. The addition of OMMT could obviously decrease viscosity of the matrix and weaken the interfacial interactions between PA6 and EPDM‐g‐MA when blending EPDM‐g‐MA with a premixed PA6/OMMT nacocomposite, resulting in the increase of rubber particle size. The final mechanical properties are not only determined by the location of OMMT, but also by the interfacial adhesion between PA6 and EPDM‐g‐MA. Having maximum percentage of OMMT platelets in the PA6 matrix and keeping good interfacial adhesion between PA6 and EPDM‐g‐MA are beneficial to impact strength. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
Composites with different jute fabric contents and polypropylene (PP) were prepared by compression molding. The composite tensile modulus increased as the fiber content increased, although the strain at break decreased due to the restriction imposed on the deformation of the matrix by the rigid fibers. Moreover, and despite the chemical incompatibility between the polar fiber and the PP matrix, the tensile strength increased with jute content because of the use of long woven fibers. The interfacial adhesion between jute and PP was improved by the addition of different commercial maleated polypropylenes to the neat PP matrix. The effect of these coupling agents on the interface properties was inferred from the resulting composite mechanical properties. Out‐of‐plane instrumented falling weight impact tests showed that compatibilized composites had lower propagation energy than uncompatibilized ones, which was a clear indication that the adhesion between matrix and fibers was better in the former case since fewer mechanisms of energy propagation were activated. These results are in agreement with those found in tensile tests, inasmuch as the compatibilized composites exhibit the highest tensile strength. Scanning electron microscopy also revealed that the compatibilized composites exhibited less fiber pullout and smoother fiber surface than uncompatibilized ones. The thermal behavior of PP–compatibilizer blends was also analyzed using differential scanning calorimetry, to confirm that the improvements in the mechanical properties were the result of the improved adhesion between both faces and not due to changes in the crystallinity of the matrix. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Biodegradable thermoplastic-based composites reinforced with kenaf fibers were prepared and characterized. Poly(lactic acid) (PLA) was selected as polymeric matrix. To improve PLA/fibers adhesion, low amount of a proper reactive coupling agent, obtained by grafting maleic anhydride onto PLA, was added during matrix/fibers melt mixing. Compared with uncompatibilized composites, this compatibilization strategy induces a strong interfacial adhesion and a pronounced improvement of the mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号