首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the epithelial–mesenchymal transition (EMT) in lung epithelial cells is increasingly being recognized as a key stage in the development of COPD, fibrosis, and lung cancers, which are all highly associated with cigarette smoking and with exposure to second-hand smoke. Using the exposure of human lung cancer epithelial A549 cells and non-cancerous Beas-2B cells to sidestream cigarette smoke extract (CSE) as a model, we studied the protective effects of adipose-derived stem cell-conditioned medium (ADSC-CM) against CSE-induced cell death and EMT. CSE dose-dependently induced cell death, decreased epithelial markers, and increased the expression of mesenchymal markers. Upstream regulator analysis of differentially expressed genes after CSE exposure revealed similar pathways as those observed in typical EMT induced by TGF-β1. CSE-induced cell death was clearly attenuated by ADSC-CM but not by other control media, such as a pass-through fraction of ADSC-CM or A549-CM. ADSC-CM effectively inhibited CSE-induced EMT and was able to reverse the gradual loss of epithelial marker expression associated with TGF-β1 treatment. CSE or TGF-β1 enhanced the speed of A549 migration by 2- to 3-fold, and ADSC-CM was effective in blocking the cell migration induced by either agent. Future work will build on the results of this in vitro study by defining the molecular mechanisms through which ADSC-CM protects lung epithelial cells from EMT induced by toxicants in second-hand smoke.  相似文献   

2.
The anticancer effects of natural phytochemicals are relevant to the modulation of cytokine signaling pathways in various cancer cells with stem-like properties as well as immune cells. The aim of this study was to elucidate a novel anticancer mechanism of Artemisia annua L. polyphenols (pKAL) involved in the regulation of growth factors, cytokines and mediators in stem-like HCT116 colorectal cancer cells. Through RayBiotech human L-1000 antibody array and bioinformatics analysis, we show here that pKAL-induced anticancer effects are associated with downregulation of growth factor and cytokine signaling proteins including TGFA, FGF16, PDGFC, CCL28, CXCR3, IRF6 and SMAD1. Notably, we found that TGF-β signaling proteins such as GDF10, ENG and TGFBR2 and well-known survival proteins such as NGF-β, VEGFD and insulin were significantly upregulated by pKAL. Moreover, the results of hematoxylin staining, cell viability assay and Western blot analysis demonstrated that TGF-β1 and NGF-β attenuated pKAL-induced anticancer effects by inhibiting pKAL-induced downregulation of caspase-8, NF-κB p65 and cyclin D1. These results suggest that certain survival mediators may be activated by pKAL through the TGF-β1 and NGF-β signaling pathways during pKAL-induced cell death and thus, strategies to inhibit the survival signaling are inevitably required for more effective anticancer effects of pKAL.  相似文献   

3.
4.
The tumor microenvironment plays a critical role in defining the growth and malignancy of solid tumors. Extracellular matrix (ECM) proteins such as collagen, vitronectin, and fibronectin are major components of the tumor microenvironment. Tumor growth-promoting reciprocal interaction between ECM and cytoplasmic proteins is regulated by the cell surface receptors called integrins. This study investigated the mechanism by which integrin β1 promotes pancreatic tumor growth. In MIA PaCa-2 pancreatic cancer cell line, the loss of integrin β1 protein reduced the ability of cells to proliferate in a 3D matrix and compromised the ability to form a focal adhesion complex. Decreased expression of integrin α5 was observed in KO cells, which resulted in impaired cell spreading and adhesion on vitronectin and fibronectin. Reduced expression of the integrin-associated protein, kindlin-2 was also recorded. The downregulation of kindlin-2 decreased the phosphorylation of Smad2/3 by reducing the expression of TGF-β receptor 2. These results unravel a new mechanism of integrin β1 in tumor growth by modifying the expression of kindlin-2 and TGF-β receptor 2 signaling.  相似文献   

5.
Orbital fibrosis, a hallmark of tissue remodeling in Graves’ ophthalmopathy (GO), is a chronic, progressive orbitopathy with few effective treatments. Orbital fibroblasts are effector cells, and transforming growth factor β1 (TGF-β1) acts as a critical inducer to promote myofibroblast differentiation and subsequent tissue fibrosis. Curcumin is a natural compound with anti-fibrotic activity. This study aims to investigate the effects of curcumin on TGF-β1-induced myofibroblast differentiation and on the pro-angiogenic activities of orbital fibroblasts. Orbital fibroblasts from one healthy donor and three patients with GO were collected for primary cell culture and subjected to myofibroblast differentiation under the administration of 1 or 5 ng/mL TGF-β1 for 24 h. The effects of curcumin on TGF-β1-induced orbital fibroblasts were assessed by measuring the cellular viability and detecting the expression of myofibroblast differentiation markers, including connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA). The pro-angiogenic potential of curcumin-treated orbital fibroblasts was evaluated by examining the transwell migration and tube-forming capacities of fibroblast-conditioned EA.hy926 and HMEC-1 endothelial cells. Treatment of orbital fibroblasts with curcumin inhibited the TGF-β1 signaling pathway and attenuated the expression of CTGF and α-SMA induced by TGF-β1. Curcumin, at the concentration of 5 μg/mL, suppressed 5 ng/mL TGF-β1-induced pro-angiogenic activities of orbital fibroblast-conditioned EA hy926 and HMEC-1 endothelial cells. Our findings suggest that curcumin reduces the TGF-β1-induced myofibroblast differentiation and pro-angiogenic activity in orbital fibroblasts. The results support the potential application of curcumin for the treatment of GO.  相似文献   

6.
The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability.  相似文献   

7.
Inhalational anesthetics was previously reported to suppress glioma cell malignancy but underlying mechanisms remain unclear. The present study aims to investigate the effects of sevoflurane and desflurane on glioma cell malignancy changes via microRNA (miRNA) modulation. The cultured H4 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. The miR-138, -210 and -335 expression were determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and cell count kit 8 (CCK8) assay with/without miR-138/-210/-335 inhibitor transfections. The miRNA downstream proteins, hypoxia inducible factor-1α (HIF-1α) and matrix metalloproteinase 9 (MMP9), were also determined with immunofluorescent staining. Sevoflurane and desflurane exposure to glioma cells inhibited their proliferation and migration. Sevoflurane exposure increased miR-210 expression whereas desflurane exposure upregulated both miR-138 and miR-335 expressions. The administration of inhibitor of miR-138, -210 or -335 inhibited the suppressing effects of sevoflurane or desflurane on cell proliferation and migration, in line with the HIF-1α and MMP9 expression changes. These data indicated that inhalational anesthetics, sevoflurane and desflurane, inhibited glioma cell malignancy via miRNAs upregulation and their downstream effectors, HIF-1α and MMP9, downregulation. The implication of the current study warrants further study.  相似文献   

8.
Endogenous bone marrow-derived mesenchymal stem cells are mobilized to peripheral blood and injured tissues in response to changes in the expression of various growth factors and cytokines in the injured tissues, including substance P (SP), transforming growth factor-beta (TGF-β), and stromal cell-derived factor-1 (SDF-1). SP, TGF-β, and SDF-1 are all known to induce the migration of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it is not yet clear how these stimuli influence or interact with each other during BM-MSC mobilization. This study used mouse bone marrow-derived mesenchymal stem cell-like ST2 cells and human BM-MSCs to evaluate whether SP, TGF-β, and SDF-1 mutually regulate their respective effects on the mobilization of BM-MSCs. SP pretreatment of ST2 and BM-MSCs impaired their response to TGF-β while the introduction of SP receptor antagonist restored the mobilization of ST2 and BM-MSCs in response to TGF-β. TGF-β pretreatment did not affect the migration of ST2 and BM-MSCs in response to SP, but downregulated their migration in response to SDF-1. SP pretreatment modulated the activation of TGF-β noncanonical pathways in ST2 cells and BM-MSCs, but not canonical pathways. These results suggest that the migration of mesenchymal stem cells is regulated by complex functional interactions between SP, TGF-β, and SDF-1. Thus, understanding the complex functional interactions of these chemotactic stimuli would contribute to ensuring the development of safe and effective combination treatments for the mobilization of BM-MSCs.  相似文献   

9.
Synovial fluid contains cytokines, growth factors and resident mesenchymal stem cells (MSCs). The present study aimed to (1) determine the effects of autologous and allogeneic synovial fluid on viability, proliferation and chondrogenesis of equine bone marrow MSCs (BMMSCs) and (2) compare the immunomodulatory properties of equine synovial fluid MSCs (SFMSCs) and BMMSCs after stimulation with interferon gamma (INF-γ). To meet the first aim of the study, the proliferation and viability of MSCs were evaluated by MTS and calcein AM staining assays. To induce chondrogenesis, MSCs were cultured in a medium containing TGF-β1 or different concentrations of synovial fluid. To meet the second aim, SFMSCs and BMMSCs were stimulated with IFN-γ. The concentration of indoleamine-2,3-dioxygenase (IDO) and nitric oxide (NO) were examined. Our results show that MSCs cultured in autologous or allogeneic synovial fluid could maintain proliferation and viability activities. Synovial fluid affected chondrocyte differentiation significantly, as indicated by increased glycosaminoglycan contents, compared to the chondrogenic medium containing 5 ng/mL TGF-β1. After culturing with IFN-γ, the conditioned media of both BMMSCs and SFMSCs showed increased concentrations of IDO, but not NO. Stimulating MSCs with synovial fluid or IFN-γ could enhance chondrogenesis and anti-inflammatory activity, respectively, suggesting that the joint environment is suitable for chondrogenesis.  相似文献   

10.
The role of prolidase (PEPD) as a ligand of the epidermal growth factor receptor (EGFR) was studied in an experimental model of wound healing in cultured fibroblasts. The cells were treated with PEPD (1–100 nM) and analysis of cell viability, proliferation, migration, collagen biosynthesis, PEPD activity, and the expressions of EGFR, insulin-like growth factor 1 (IGF-1), and β1-integrin receptor including downstream signaling proteins were performed. It has been found that PEPD stimulated proliferation and migration of fibroblasts via activation of the EGFR-downstream PI3K/Akt/mTOR signaling pathway. Simultaneously, PEPD stimulated the expression of β1-integrin and IGF-1 receptors and proteins downstream to these receptors such as FAK, Grb2, and ERK1/2. Collagen biosynthesis was increased in control and “wounded” fibroblasts under PEPD treatment. The data suggest that PEPD-induced EGFR signaling may serve as a new attempt to therapy wound healing.  相似文献   

11.
Cancer metastasis accounts for most of the mortality associated with solid tumors. However, antimetastatic drugs are not available on the market. One of the important biological events leading to metastasis is the epithelial to mesenchymal transition (EMT) induced by cytokines, namely transforming growth-factor-β (TGF-β). Although several classes of inhibitors targeting TGF-β and its receptor have been developed, they have shown profound clinical side effects. We focused on our synthetic compound, HPH-15, which has shown anti-fibrotic activity via the blockade of the TGF-β Smad-dependent signaling. In this study, 10 μM of HPH-15 was found to exhibit anti-cell migration and anti-EMT activities in non-small-cell lung cancer (NSCLC) cells. Although higher concentrations are required, the anti-EMT activity of HPH-15 has also been observed in 3D-cultured NSCLC cells. A mechanistic study showed that HPH-15 inhibits downstream TGF-β signaling. This downstream inhibition blocks the expression of cytokines such as TGF-β, leading to the next cycle of Smad-dependent and -independent signaling. HPH-15 has AMPK-activation activity, but a relationship between AMPK activation and anti-EMT/cell migration was not observed. Taken together, HPH-15 may lead to the development of antimetastatic drugs with a new mechanism of action.  相似文献   

12.
Recently, the role of kidney pericytes in kidney fibrosis has been investigated. This study aims to evaluate the effect of paricalcitol on hypoxia-induced and TGF-β1-induced injury in kidney pericytes. The primary cultured pericytes were pretreated with paricalcitol (20 ng/mL) for 90 min before inducing injury, and then they were exposed to TGF-β1 (5 ng/mL) or hypoxia (1% O2 and 5% CO2). TGF-β1 increased α-SMA and other fibrosis markers but reduced PDGFRβ expression in pericytes, whereas paricalcitol reversed the changes. Paricalcitol inhibited the TGF-β1-induced cell migration of pericytes. Hypoxia increased TGF-β1, α-SMA and other fibrosis markers but reduced PDGFRβ expression in pericyte, whereas paricalcitol reversed them. Hypoxia activated the HIF-1α and downstream molecules including prolyl hydroxylase 3 and glucose transporter-1, whereas paricalcitol attenuated the activation of the HIF-1α-dependent molecules and TGF-β1/Smad signaling pathways in hypoxic pericytes. The gene silencing of HIF-1α vanished the hypoxia-induced TGF-β1, α-SMA upregulation, and PDGFRβ downregulation. The effect of paricalcitol on the HIF-1α-dependent changes of fibrosis markers was not significant after the gene silencing of HIF-1α. In addition, hypoxia aggravated the oxidative stress in pericytes, whereas paricalcitol reversed the oxidative stress by increasing the antioxidant enzymes in an HIF-1α-independent manner. In conclusion, paricalcitol improved the phenotype changes of pericyte to myofibroblast in TGF-β1-stimulated pericytes. In addition, paricalcitol improved the expression of fibrosis markers in hypoxia-exposed pericytes both in an HIF-1α-dependent and independent manner.  相似文献   

13.
Recent reports have indicated prolidase (PEPD) as a ligand of the epidermal growth factor receptor (EGFR). Since this receptor is involved in the promotion of cell proliferation, growth, and migration, we aimed to investigate whether prolidase may participate in wound healing in vitro. All experiments were performed in prolidase-treated human keratinocytes assessing cell vitality, proliferation, and migration. The expression of downstream signaling proteins induced by EGFR, insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1), and β1-integrin receptors were evaluated by Western immunoblotting and immunocytochemical staining. To determine collagen biosynthesis and prolidase activity radiometric and colorimetric methods were used, respectively. Proline content was determined by applying the liquid chromatography coupled with mass spectrometry. We found that prolidase promoted the proliferation and migration of keratinocytes through stimulation of EGFR-downstream signaling pathways in which the PI3K/Akt/mTOR axis was involved. Moreover, PEPD upregulated the expression of β1-integrin and IGF-1 receptors and their downstream proteins. Proline concentration and collagen biosynthesis were increased in HaCaT cells under prolidase treatment. Since extracellular prolidase as a ligand of EGFR induced cell growth, migration, and collagen biosynthesis in keratinocytes, it may represent a potential therapeutic approach for the treatment of skin wounds.  相似文献   

14.
Fibrotic cataracts have been attributed to transforming growth factor-beta (TGF-β)-induced epithelial-to-mesenchymal transition (EMT). Using mouse knockout (KO) models, our laboratory has identified MMP9 as a crucial protein in the TGF-β-induced EMT process. In this study, we further revealed an absence of alpha-smooth muscle actin (αSMA) and filamentous-actin (F-actin) stress fibers in MMP9KO mouse lens epithelial cell explants (LECs). Expression analysis using NanoString revealed no marked differences in αSMA (ACTA2) and beta-actin (β-actin) (ACTB) mRNA between the lenses of TGF-β-overexpressing (TGF-βtg) mice and TGF-βtg mice on a MMP9KO background. We subsequently conducted a protein array that revealed differential regulation of proteins known to be involved in actin polymerization and cell migration in TGF-β-treated MMP9KO mouse LECs when compared to untreated controls. Immunofluorescence analyses using rat LECs and the novel MMP9-specific inhibitor, JNJ0966, revealed similar differential regulation of cortactin, FAK, LIMK1 and MLC2 as observed in the array. Finally, a reduction in the nuclear localization of MRTF-A, a master regulator of cytoskeletal remodeling during EMT, was observed in rat LECs co-treated with JNJ0966 and TGF-β. In conclusion, MMP9 deficiency results in differential regulation of proteins involved in actin polymerization and cell migration, and this in turn prevents TGF-β-induced EMT in the lens.  相似文献   

15.
Human mesenchymal stem cells (MSCs) have the potential to differentiate into nucleus pulposus (NP)-like cells under specific stimulatory conditions. Thus far, the effects of bone morphogenetic protein 3 (BMP3) and the cocktail effects of BMP3 and transforming growth factor (TGF)-β on MSC proliferation and differentiation remain obscure. Therefore, this study was designed to clarify these unknowns. MSCs were cultured with various gradients of BMP3 and BMP3/TGF-β, and compared with cultures in basal and TGF-β media. Cell proliferation, glycosaminoglycan (GAG) content, gene expression, and signaling proteins were measured to assess the effects of BMP3 and BMP3/TGF-β on MSCs. Cell number and GAG content increased upon the addition of BMP3 in a dose-dependent manner. The expression of COL2A1, ACAN, SOX9, and KRT19 increased following induction with BMP3 and TGF-β, in contrast to that of COL1A1, ALP, OPN, and COMP. Smad3 phosphorylation was upregulated by BMP3 and TGF-β, but BMP3 did not affect the phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 or c-Jun N-terminal kinase (JNK). Our results reveal that BMP3 enhances MSC proliferation and differentiation into NP-like cells, as indicated by increased cell numbers and specific gene expressions, and may also cooperate with TGF-β induced positive effects. These actions are likely related to the activation of TGF-β signaling pathway.  相似文献   

16.
17.
Paeonia suffruticosa has been extensively used as a traditional medicine with various beneficial effects; paeonolide (PALI) was isolated from its dried roots. This study aimed to investigate the novel effects and mechanisms of PALI in pre-osteoblasts. Here, cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP) and by staining it with Alizarin red S (ARS). Cell migration was assessed using wound healing and Boyden chamber assays. Western blot and immunofluorescence analyses were used to examine the intracellular signaling pathways and differentiation proteins. PALI (0.1, 1, 10, 30, and 100 μM) showed no cytotoxic or proliferative effects in pre-osteoblasts. In the absence of cytotoxicity, PALI (1, 10, and 30 μM) promoted wound healing and transmigration during osteoblast differentiation. ALP staining demonstrated that PALI (1, 10, and 30 μM) promoted early osteoblast differentiation in a dose-dependent manner, and ARS staining showed an enhanced mineralized nodule formation, a key indicator of late osteoblast differentiation. Additionally, low concentrations of PALI (1 and 10 μM) increased the bone morphogenetic protein (BMP)–Smad1/5/8 and Wnt–β-catenin pathways in osteoblast differentiation. Particularly, PALI (1 and 10 μM) increased the phosphorylation of ERK1/2 compared with BMP2 treatment, an FDA-approved drug for bone diseases. Furthermore, PALI-mediated early and late osteoblast differentiation was abolished in the presence of the ERK1/2 inhibitor U0126. PALI-induced RUNX2 (Cbfa1) expression and nuclear localization were also attenuated by blocking the ERK1/2 pathway during osteoblast differentiation. We suggest that PALI has biologically novel activities, such as enhanced osteoblast differentiation and bone mineralization mainly through the intracellular ERK1/2-RUNX2 signaling pathway, suggesting that PALI might have therapeutic action and aid the treatment and prevention of bone diseases, such as osteoporosis and periodontitis.  相似文献   

18.
19.
Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP −/−), SP-deficient (Tac1−/−) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures.  相似文献   

20.
In a previous study, we isolated human amniotic fluid (AF)-derived mesenchymal stem cells (AF-MSCs) and utilized normoxic conditioned medium (AF-MSC-norCM) which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM), it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials). Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM) compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号