首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A channel‐estimate‐based frequency‐domain equalization (CE‐FDE) scheme for wireless broadband single‐carrier communications over time‐varying frequency‐selective fading channels is proposed. Adaptive updating of the FDE coefficients are based on the timely estimate of channel impulse response (CIR) to avoid error propagation that is a major source of performance degradation in adaptive equalizers using least mean square (LMS) or recursive least square (RLS) algorithms. Various time‐domain and frequency‐domain techniques for initial channel estimation and adaptive updating are discussed and evaluated in terms of performance and complexity. Performance of uncoded and coded systems using the proposed CE‐FDE with diversity combining in different time‐varying, multi‐path fading channels is evaluated. Analytical and simulation results show the good performance of the proposed scheme suitable for broadband wireless communications. For channels with high‐Doppler frequency, diversity combining substantially improves the system performance. For channels with sparse multi‐path propagation, a tap‐selection strategy used with the CE‐FDE systems can significantly reduce the complexity without sacrificing the performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the power allocation problem in decode‐and‐forward cognitive dual‐hop systems over Rayleigh fading channels. In order to optimize the performance of the secondary network in terms of power consumption, an outage‐constrained power allocation scheme is proposed. The secondary nodes adjust their transmit power subject to an average interference constraint at the primary receiver and an outage probability constraint for the secondary receivers while having only statistical channel knowledge with respect to the primary nodes. We compare this approach with a power allocation scheme based on instantaneous channel state information under a peak interference constraint. Analytical and numerical results show that the proposed approach, without requiring the constant interchange of channel state information, can achieve a similar performance in terms of outage probability as that of power allocation based on instantaneous channel knowledge. Moreover, the transmit power allocated by the proposed approach is considerably smaller than the power allocated by the method based on instantaneous channel knowledge in more than 50% of the time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
For wireless multiple‐input multiple‐output (MIMO) communications systems, both channel estimation error and spatial channel correlation should be considered when designing an effective signal detection system. In this paper, we propose a new soft‐output MMSE based Vertical Bell Laboratories Layered Space‐Time (V‐BLAST) receiver for spatially‐correlated Rician fading MIMO channels. In this novel receiver, not only the channel estimation errors and channel correlation but also the residual interference cancellation errors are taken into consideration in the computation of the MMSE filter and the log‐likelihood ratio (LLR) of each coded bit. More importantly, our proposed receiver generalizes all existing soft‐output MMSE V‐BLAST receivers, in the sense that, previously proposed soft‐output MMSE V‐BLAST receivers can be derived as the reduced forms of our receiver when the above three considered factors are partially or fully simplified. Simulation results show that the proposed soft‐output MMSE V‐BLAST receiver outperforms the existing receivers with a considerable gain in terms of bit‐error‐rate (BER) performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Differential unitary space‐time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple‐input multiple‐output orthogonal frequency division multiplexing (MIMO‐OFDM) systems with frequency‐selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO‐OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.  相似文献   

5.
We present iterative channel estimation and decoding schemes for multi‐input multi‐output (MIMO) Rayleigh block fading channels in spatially correlated noise. An expectation‐maximization (EM) algorithm is utilized to find the maximum likelihood (ML) estimates of the channel and spatial noise covariance matrices, and to compute soft information of coded symbols which is sent to an error‐control decoder. The extrinsic information produced by the decoder is then used to refine channel estimation. Several iterations are performed between the above channel estimation and decoding steps. We derive modified Cramer–Rao Bound (MCRB) for the unknown channel and noise parameters, and show that the proposed EM‐based channel estimation scheme achieves the MCRB at medium and high SNRs. For a bit error rate of 10−6 and long frame length, there is negligible performance difference between the proposed scheme and the ideal coherent detector that utilizes the true channel and noise covariance matrices. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Most signal‐to‐noise ratio (SNR) estimation techniques in digital communication channels derive the SNR estimates solely from samples of the received signal after the matched filter. They are based on symbol SNR and assume perfect synchronization and intersymbol interference (ISI)‐free symbols. In severe channel distortion where ISI is significant, the performance of these estimators badly deteriorates. We propose an SNR estimator which can operate on data samples collected at the front‐end of a receiver or at the input to the decision device. This will relax the restrictions over channel distortions and help extend the application of SNR estimators beyond system monitoring. The proposed estimator uses the characteristics of the second order moments of the additive white Gaussian noise digital communication channel and a linear predictor based on the modified‐covariance algorithm in estimating the SNR value. The performance of the proposed technique is investigated and compared with other in‐service SNR estimators in digital communication channels. The simulated performance is also compared to the Cramér‐Rao bound as derived at the input of the decision circuit.  相似文献   

7.
This paper considers cooperative power allocation with the use of partial channel state information (CSI) in a multi‐user dual‐hop relay system with multiple antennas. The end‐to‐end capacity can be improved by dynamically allocating the transmit power of the base station and relay according to co‐channel interference caused by the adjacent relays. The proposed scheme allocates the transmit power in association with the eigenvalues and angle difference between the eigenvectors of transmit correlation matrices of the desired and interference channel. It is shown by means of upper‐bound analysis that the end‐to‐end capacity of the proposed scheme can be maximized in highly correlated channel environments when the principal eigenvectors of transmit correlation matrices of the desired and interference channel are orthogonal to each other. It is also shown that the proposed scheme is robust to the channel estimation error. Finally, the performance of the proposed scheme is verified by the computer simulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
It is well known that orthogonal frequency division multiplexing (OFDM) is sensitive to carrier frequency offset (CFO) and suffers from a high peak‐to‐average ratio. In addition, the performance of OFDM is severely affected by strong co‐channel interference and strong narrowband interference. To mitigate the limitations of OFDM, we propose a new multi‐carrier transceiver based on frequency‐shift filter. A frequency‐shift filter can separate spectrally overlapping sub‐carrier signals by exploiting the spectral correlation inherent in the cyclostationary modulated signals. To increase spectral efficiency, we increase the percentage of spectral overlap between two adjacent sub‐channels. We derive an upper bound and a lower bound on the bit error rate performance of the proposed multi‐carrier transceiver in additive white Gaussian noise channel and frequency‐nonselective Rayleigh fading channel, respectively. Compared with OFDM, our simulation results show that the proposed multi‐carrier transceiver is much less sensitive to CFO and has a lower peak‐to‐average ratio; moreover, without any additional interference suppression technique, the proposed transceiver has the advantage of being able to mitigate strong co‐channel interference with CFO from the intended multi‐carrier signal and mitigate strong narrowband interference in additive white Gaussian noise channel and in Rayleigh fading channel in which a large CFO between the transmitted signal and the received signal often occurs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Although there have been many interesting works on outage performance analysis of cognitive AF relay networks, we have not found works taking into consideration all the following issues: multiple primary users (PUs), the existence of the direct link from secondary user (SU) source to SU destination, non‐identical, independent Rayleigh‐fading channels, non‐identical interference power limits of PUs, and non‐identical noise powers in signals. Additionally, in outage performance analysis for such networks, the correlation issue, which results from the channel gain of interference links from the SU nodes to the PU, requires elaborate treatments. Hence, analyzing outage performance of non‐identical‐parameter networks (where all channels are fully non‐identical Rayleigh‐fading channels, the PUs have different interference power limits, and received signals have different noise powers) from the beginning is highly complicated. To overcome this problem, we conduct the analysis in two steps. In the first step, expressions of both exact and asymptotic outage probability of identical‐parameter cognitive AF relay networks (where all channels are fully non‐identical Rayleigh‐fading channels but all other parameters are identical) are obtained. Then in the second step, we propose a method for transforming a network with all non‐identical parameters into a new identical‐parameter network, meanwhile guaranteeing that outage performance of the two networks before and after the transformation are the same. Hence, OP of the original non‐identical‐parameter network can be obtained indirectly by using the analysis results obtained in the first step. Our analysis results are validated through numerical simulations. The effects of the number of PUs and the diversity level of channel parameters (which means the range of the channel parameter values) are also inspected by simulations. The results show that taking these factors into consideration is of key importance in obtaining a more accurate estimation of outage performance of such networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
针对瑞利衰落信道,提出了一种新的基于加权循环前缀(CP,cyclic prefix)的MIMO-OFDM系统频偏估计算法及其简化实用算法。根据最大比合并原理,降低了MIMO-OFDM系统符号间干扰和高斯白噪声对频偏估计性能的影响。然后,利用无线信道统计信息,得到其简化算法。仿真结果表明,此算法在瑞利衰落信道中可以取得良好的频偏估计性能并优于其他同类算法。  相似文献   

11.
Modeling of wireless channels, especially non‐stationary fading channels, is important for design and performance analysis of wireless communication systems. Recently, we proposed a new approach to modeling non‐stationary fading channels, based on the theory of evolutionary spectrum (ES). In this paper, we develop a time‐varying autoregressive (AR) model for a non‐stationary flat fading channel; specifically, we develop a method to determine the time‐varying coefficients of the AR channel model, given the ES of a non‐stationary process. Furthermore, with the ES theory, we develop a trace‐driven time‐varying AR channel simulator to generate a non‐stationary flat fading process. Simulation results show that the ES of the channel gain process produced by our joint ES‐and‐AR‐based channel model agrees well with the user‐specified ES, indicating the accuracy of our joint ES‐and‐AR‐based channel model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Cognitive radio (CR) with spectrum‐sharing feature is a promising technique to address the spectrum under‐utilization problem in dynamically changing environments. In this paper, the achievable capacity gain of spectrum‐sharing systems over dynamic fading environments is studied. To perform a general analysis, a theoretical fading model called hyper‐fading model that is suitable to the dynamic nature of CR channel is proposed. Closed‐form expressions of probability density function (PDF) and cumulative density function (CDF) of the signal‐to‐noise ratio (SNR) for secondary users (SUs) in spectrum‐sharing systems are derived. In addition, the capacity gains achievable with spectrum‐sharing systems in high and low power regions are obtained. The effects of different fading figures, average fading powers, interference temperatures, peak powers of secondary transmitters, and numbers of SUs on the achievable capacity are investigated. The analytical and simulation results show that the fading figure of the channel between SUs and primary base‐station (PBS), which describes the diversity of the channel, does not contribute significantly to the system performance gain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, anti‐jamming capabilities are proposed for a generic OFDM‐based wireless communication system. The performance of a wireless system may severely degrade in presence of jamming or intentional interferences. A malicious entity can send strong interference or noisy signals in the same transmit frequency band thus preventing the intended receiver to correctly decode the transmitted data. As a countermeasure, our work proposes algorithms and techniques to restore the system performance in presence of such malicious entities. Proposed anti‐jamming system consists of an adaptive framework that adapts itself to varying jammer behavior and wireless environment, and then, it chooses an optimal strategy to effectively cancel out the effect of jamming and channel fading. Optimization problem is formulated as a multi‐objective criterion for maximization of system throughput and minimization of energy consumption. Simulation results computed in Rayleigh fading channels with different wideband jamming modes and powers show that the proposed system effectively cancels out the jamming and channel fading effects thus maximizing the system performance and minimizing cost of energy consumption. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we propose a novel low‐complexity transmission power adaptation with good bit error rate (BER) performance for multicarrier code‐division multiple‐access (MC‐CDMA) systems over Nakagami‐m fading channels. We first propose a new receiver called ath‐order‐maximal‐ratio‐combining (a‐MRC) receiver with which the receiver power gain for the nth subcarrier is the ath (a?1) power of the corresponding channel gain. Incorporating the a‐MRC receiver, we then propose a new transmission power adaptation scheme where the transmission power is allocated over all the N subcarriers according to the subchannel gains and the transmitter adapts its power to maintain a constant signal‐to‐interference‐plus‐noise (SINR) at the receiver. The proposed scheme has a significant performance gain over the nonadaptive transmission scheme over both independent and correlated fading channels. Moreover, the proposed scheme keeps good BER performance while it is much simpler than the previous power control/adaptation schemes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The grail of next‐generation wireless networks is providing real‐time services for delay‐sensitive applications, which require that the wireless networks provide QoS guarantees. The effective capacity (EC) proposed by Wu and Negi provides a powerful tool for design of QoS provisioning mechanisms. In this paper, we intend to generalize their formula for the effective capacity of a correlated Rayleigh fading channel; specifically, we derive a closed form approximate EC formula for a special correlated Nakagami‐m fading channel, for which the inverse of the correlation coefficient matrix is tridiagonal. To verify its accuracy via simulation, we develop a Green‐matrix based approach, which allows us to analytically obtain the effective capacity (given the joint probability density function of a correlated Nakagami‐m fading channel) while being able to simulate the corresponding channel gain process. Simulation results show that our EC formula is accurate. Furthermore, to facilitate the application of the EC theory to the design of practical QoS provisioning mechanisms, we propose a simple algorithm for estimating the EC of an arbitrary correlated Nakagami‐m fading channel, given channel measurements; simulation results demonstrate the accuracy of our proposed EC estimation algorithm showing its suitability in practice. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we study efficient power control schemes for delay sensitive communication over fading channels. Our objective is to find a power control law that optimizes the link layer performance, specifically, minimizes the packet drop probability, subject to a long‐term average power constraint. We assume the buffer at the transmitter is finite; hence packet drop happens when the buffer is full. The fading channel under our study has a continuous state, e.g., Rayleigh fading. Since the channel state space is continuous, dynamic programming is not applicable for power control. In this paper, we propose a sub‐optimal power control law based on a parametric approach. The proposed power control scheme tries to minimize the packet drop probability by considering the queue length, i.e., reducing the probability of those queue‐length states that will cause full buffer. Simulation results show that our proposed power control scheme reduces the packet drop probability by one or two orders of magnitude, compared to the time domain water filling (TDWF) and the truncated channel inversion (TCI) power control. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
High‐speed I/O channels require adaptive techniques to optimize the settings for filter tap weights at decision feedback equalization (DFE) read channels to compensate for channel inter‐symbol interference (ISI) and crosstalk from multiple adjacent channels. Both ISI and crosstalk tend to vary with channel length, process, and temperature variations. Individually optimizing parameters such as those just mentioned leads to suboptimal solutions. We propose a joint optimization technique for crosstalk cancellation (XTC) at DFE to compensate for both ISI and XTC in high‐speed I/O channels. The technique is used to compensate for between 15.7 dB and 19.7 dB of channel loss combined with a variety of crosstalk strengths from 60 mVp‐p to 180 mVp‐p adaptively, where the transmit non‐return‐to‐zero signal amplitude is a constant 500 mVp‐p.  相似文献   

18.
This paper considers direct‐sequence code‐division multiple‐access with zero‐correlation zone sequences (ZCZ‐CDMA) and orthogonal frequency‐division multiple‐access (OFDMA) schemes using M‐ary QAM signaling for broadband wireless communications. Their system structures, complexities and performances in both AWGN and multipath frequency‐selective fading channels are evaluated and compared. For ZCZ‐CDMA, joint suppression of the multipath fading interference and multiple‐access interference can be achieved with a reduced family‐size of the spreading sequences. For OFDMA, analytical and simulation results indicate that it has the same performance as ZCZ‐CDMA in fast time‐varying multipath fading channels. In time‐invariant or slowly time‐varying channels, where the channel information can be made available to transmitters, OFDMA outperforms ZCZ‐CDMA, offers a higher capacity and is more flexible for system reconfiguration with a comparable computational complexity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Since the publication of Alamouti's famous space‐time block code, various quasi‐orthogonal space‐time block codes (QSTBC) for multi‐input multi‐output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2n (n = 3, 4,…) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum‐likelihood receiver or low‐complexity zero‐forcing receiver.  相似文献   

20.
The problem concerning short‐term fading and long‐term fading (shadowing) and their deleterious effects on wireless systems performance has been in focus for a long time. In this paper, motivated by the results of propagation measurements in land‐mobile and indoor‐mobile systems, and by the fact that gamma distribution can describe shadowing reliably, Nakagami‐m distribution is used to model the signal envelope and gamma distribution is used to model the average signal power. Receive diversity with maximal‐ratio combining and selection combining is implemented at the microlevel and macrolevel, respectively. The general case is explored, which assumes that microdiversity and macrodiversity are provided through arbitrary number of channels. Because shadowing has larger correlation distance than short‐term fading, correlated macrodiversity channels are studied. This paper investigates the dynamics of the received signal. A novel rapidly converging infinite‐series expression for average level crossing rate and average fade duration are obtained. Numerical results are graphically presented to examine the impact of fading severity, shadowing severity, number of diversity branches at the microlevel, number of base stations and correlation between base stations to the system's performance. Computer simulations are also performed to verify the validity and the accuracy of proposed theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号