首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This study focuses on the performance characteristics of wood/short carbon fiber hybrid biopolyamide11 (PA11) composites. The composites were produced by melt‐compounding of the fibers with the polyamide via extrusion and injection molding. The results showed that mechanical properties, such as tensile and flexural strength and modulus of the wood fiber composites were significantly higher than the PA11 and hybridization with carbon fiber further enhanced the performance properties, as well as the thermal resistance of the composites. Compared to wood fiber composites (30% wood fiber), hybridization with carbon fiber (10% wood fiber and 20% carbon fiber) increased the tensile and flexural modulus by 168% and 142%, respectively. Izod impact strength of the hybrid composites exhibited a good improvement compared to wood fiber composites. Thermal properties and resistance to water absorption of the composites were improved by hybridization with carbon fiber. In overall, the study indicated that the developed hybrid composites are promising candidates for high performance applications, where high stiffness and thermal resistance are required. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43595.  相似文献   

2.
In this study, high‐density polyethylene/agave‐coir composites with two fiber contents (20 and 30 wt%) and different coir‐agave fiber ratios (1–0, 0.8–0.2, 0.6–0.4, 0.4–0.6, 0.2–0.8, and 0–1) were produced in a two‐step process using twin‐screw extrusion followed by injection molding. The effect of mixing two different natural fibers and the addition of coupling agent on water absorption, mechanical properties, and morphology is reported. The rule of hybrid mixture was used to predict the properties of the composites, showing a good agreement with the experimental data. The results obtained showed that the combination of different fibers produces composites with unique characteristics as coir fibers absorb less water than agave fibers, while at the same time increase more tensile and flexural strengths. On the other hand, agave fibers were found to improve the impact strength of coir composites. Also, the effect of water absorption on the mechanical properties was studied. Finally, the use of a coupling agent had a positive effect on mechanical properties, while lowering water uptake. POLYM. COMPOS., 37:3015–3024, 2016. © 2015 Society of Plastics Engineers  相似文献   

3.
In this study, randomly oriented short jute/bagasse hybrid fiber‐reinforced epoxy novolac composites were prepared by keeping the relative volume ratio of jute and bagasse of 1:3 and the total fiber loading 0.40 volume fractions. The effect of jute fiber hybridization and different layering pattern on the physical, mechanical, and thermal properties of jute/bagasse hybrid fiber‐reinforced epoxy novolac composites was investigated. The hybrid fiber‐reinforced composites exhibited fair water absorption and thickness swelling properties. To investigate the effect of layering pattern on thermomechanical behavior of hybrid composites, the storage modulus and loss factor were determined using dynamic mechanical analyzer from 30 to 200°C at a frequency of 1 Hz. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy. The morphological features of the composites were well corroborated with the mechanical properties. Thermogravimetric analysis indicated an increase in thermal stability of pure bagasse composites with the incorporation of jute fibers. The incorporation of hybrid fibers results better improvement in both thermal and dimensional stable compared with the pure bagasse fiber composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
The purpose of this research was to investigate the water absorption behavior and associated dimensional stability of kenaf‐polypropylene‐filled (PP/KF) composites. Composites with different fiber loadings, ranging from 0 to 40 wt %, were prepared with a twin‐screw extruder followed by hot press molding. The influence of the compatibilizer was also studied for PP/KF composite with 5 wt % maleated PP (MAPP). Water absorption testing was carried out at room temperature for 7 weeks. Tensile, flexural, and impact tests were also performed on control, wet, and re‐dried specimens. Increasing the fiber content resulted in higher water absorption and thickness swelling. The inferior mechanical properties of the wet composites were attributed to the effect of water, which deteriorates the interfacial properties of composites. On re‐drying, all properties were almost recovered because of the recovery of interfacial area as evident in scanning electron micrographs. Incorporation of the MAPP significantly improved the compatibility between the fiber and matrix and the mechanical properties of the composites compared with those without MAPP. It also diminished the water absorption as well as the related thickness swelling in the composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
In this study, an attempt has been made to utilize banana fiber (a natural fiber from agricultural waste) as reinforcement for low-density polyethylene (LDPE) to develop environmental friendly composite materials. LDPE/banana fiber composites were fabricated at different fiber loadings (10, 15, 20, 25, and 30 wt %) using compression molding technique. The composite with the composition of 25 wt % banana fiber was observed to be optimum on the basis of biodegradability and mechanical properties. Further, the effect of banana fiber surface treatment (alkali and acrylic acid) on the mechanical properties, morphology and water absorption behavior of the LDPE/banana fiber composites in the absence and presence of compatibilizer (maleic anhydride grafted LDPE, MA-g-LDPE) was comparatively studied. The alkali and acrylic acid treatment of the banana fibers led to enhanced mechanical properties and water resistance property of the composites, and these properties got further improved by the addition of the compatibilizer. The addition of compatibilizer to the acrylic acid treated banana fiber composites showed the most effective improvement in the flexural and impact strength and also, exhibited a reduction in the water absorption capacity. However, the tensile strength of the compatibilized composites with treated fibers resulted in slightly lower values than those with untreated fibers, because of the degradation of fibers by chemical attack as was evidenced by scanning electron microscopy (SEM) micrographs. SEM studies carried out on the tensile fractured surface of the specimens showed improved fiber-matrix interaction on the addition of compatibilizer.  相似文献   

7.
采用碱、高锰酸钾及热对剑麻纤维布进行了表面处理,并由真空辅助树脂传递模塑成型(VARTM)工艺制备了剑麻纤维布增强不饱和聚酯树脂复合材料。通过对复合材料的力学性能及吸水性的测试,研究了不同剑麻纤维布表面处理对其不饱和聚酯树脂复合材料性能的影响。结果表明:经过碱处理,复合材料的拉伸、弯曲,冲击强度提高最大,可分别提高26.5%,16.5%和22.6%,吸水率降低了47.5%。对剑麻纤维布进行表面处理可使复合材料的界面性能得到改善,力学性能提高,吸水性降低。  相似文献   

8.
Lignocellulosic materials can be used for the development of bio‐based composites. This study explores the potential of long bamboo fiber bundles extracted directly from bamboo stems using the novel mechanical method and bamboo‐based fiber composites (BFC) fabricated using long bamboo fiber bundles and phenolic resins via cold pressing and thermal cure process. The microstructure, mechanical properties, and durability of BFC were evaluated, results being compared with raw bamboo and other commercialized bamboo fiber composites. The mechanical properties of BFC reinforced with 87% (w/w) long bamboo fiber bundles increased more than 50% than those of raw bamboo and were significantly higher than those of other bamboo‐based composites. Lower water absorption and thickness swelling were obtained in the case where bamboo fiber bundles with the small fineness. Higher tensile strength was obtained in the case where bamboo fiber bundles with large sizes of bamboo fiber bundles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40371.  相似文献   

9.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
In this study, the main focus was on the effect of wood fiber (WF) content and particle size on the morphology and mechanical, thermal, and water‐absorption properties of uncompatibilized and ethylene glycidyl methacrylate copolymer (EGMA) compatibilized ethylene vinyl acetate copolymer–WF composites. For uncompatibilized composites, the tensile strength decreased with increasing WF content, whereas for compatibilized composites, the tensile strength initially decreased, but it increased for composites containing more than 5% WF. Small‐WF‐particle‐containing composites had higher tensile strengths than composites containing larger WF particles, both in the presence and absence of EGMA. WF particle size did not seem to have much influence on the degradation behavior of the composites, whereas water absorption by the composites seemed to be higher in composites with smaller particle sizes for both compatibilized and uncompatibilized composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3645–3654, 2007  相似文献   

11.
Clay–starch composites with different aggregate sizes and starch to clay ratios were prepared by a simple precipitation method. The aggregates of the composites were used as fillers to improve the paper properties. The experimental results showed that the paper strengths increased more than 100% for starch‐modified clay compared to untreated clay at 20–30% clay loading. The increase in paper strengths of clay–starch composite‐filled handsheets was mainly due to two reasons, i.e., the relatively large aggregate size and the improved internal bonding. The optical properties compared at same mechanical strength were also improved. The water solubility of starch in the clay–starch composite was less than 3% at 50°C for 30 min, and it could be further reduced by adding crosslinker. Bonding sites between composite and fiber were investigated by scanning electron microscope. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1032–1038, 2006  相似文献   

12.
The aim of this study is to prepare of self‐reinforced polyethylene graded composite laminates (SrPEGCL) by adopting both concepts of “graded” and “self‐reinforced” and analyze their mechanical properties under tensile loading. Three different kinds of fiber volume fractions were employed to prepare continuous fiber unidirectional symmetry SrPEGCL with two graded directions. Tensile experiments were carried out to investigate tensile properties of SrPE composites in longitudinal, transverse, and 45‐bias direction. The microscopic failure mechanism of SrPEGCL were studied and observed by Scanning Electron Microscope (SEM). Laminate stress analysis with ply‐by‐ply discount method was adopted to investigate the damage mechanism using failure criteria and parallel spring model. Observations and conclusions about the effect of graded structure and graded direction on mechanical properties of SrPEGCL under tensile loading were discussed. Compared to common self‐reinforced polyethylene composites, SrPEGCL with the same or even less overall fiber volume fraction exhibited 10–20% higher tensile strength under longitudinal, transverse and 45‐bias loading direction, while graded direction had an effect on the mechanical strength of SrPEGCL as well. POLYM. COMPOS., 36:128–137, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
In this article, we report the effects of hybridization and fiber‐surface modification on the properties of hybrid composites prepared from recycled polypropylene (RPP), coupling agents, oil palm empty fruit bunch (EFB), and glass fibers through a twin‐screw extruder and an injection‐molding machine. The surface of the EFB fibers was modified with different concentrations (10–15 wt %) and temperatures (60–90°C) of alkali solutions. The structure and morphology of the fibers were observed with the help of Fourier transform infrared spectroscopy and scanning electron microscopy. Different types of composites were fabricated with untreated, alkali‐treated, and heat‐alkali‐treated fibers. Comparative analysis of the mechanical, structural, morphological, and thermal properties of the composites was carried out to reveal the effects of treatment and hybridization. The analysis results reveal that composites prepared from the alkali‐treated (in the presence of heat) fibers show improved mechanical, thermal, and morphological properties with a remarkably reduced water absorption. Additionally, the crystallinity of RPP also increased with the development of biaxial crystals. The improvement of various properties in relation to the structures and morphologies of the composites is discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43049.  相似文献   

14.
以PLA、稻壳粉为原材料,分别加入玻璃纤维、乙烯-辛烯共聚物(POE)、碳酸钙为增韧剂进行增韧改性,以模压成型的方法制备了PLA/稻壳木塑复合材料,结合力学性能、吸水性能、X射线衍射(XRD)分析和对材料表面的显微观察研究了不同种类及含量的增韧剂对木塑复合材料力学性能的影响。结果表明,在玻璃纤维含量为20%的时候,PLA/稻壳木塑复合材料的增韧效果较好,其洛氏硬度值达68,其拉伸强度达到6.16 MPa,弯曲强度达到15.41 MPa,冲击强度为144.40 kJ/m2,但吸水性能显著提高,约为不添加增韧剂时的1.5倍;在POE含量为20%的时候,PLA/稻壳木塑复合材料吸水性降低效果最为显著,60 h浸泡实验其吸水率比不添加POE小10%。XRD分析及显微分析表明,除CaCO3自身结构影响外,添加不同增韧剂均未使PLA/稻壳复合材料形成新的晶型结构,加入POE和CaCO3的增韧效果不明显,是因为两种物质颗粒孤立存在于基体中,未形成相互搭连的网格结构。  相似文献   

15.
《Polymer Composites》2017,38(3):583-587
Hybrid natural fiber polymer nanocomposites were prepared using various natural fibers (kenaf, coir, and wood), polypropylene, and montmorillonite nanoclay through the hot compression method. The effects of fiber hybridization and nanoclay content on the physico‐mechanical and biodegradable properties of the synthesized composites were investigated. Fourier‐transform infrared and scanning electron microscopic analyses indicated that the structure and surface morphology of composites were transformed after fiber hybridization and the subsequent nanoclay incorporation. X‐ray diffraction pattern revealed that the percent crystallinity of hybrid nanocomposites significantly increased. Furthermore, the tensile strength and tensile modulus also significantly improved for the hybrid nanocomposites due to the addition of montmorillonite nanoclay. The biodegradability and water absorption tests were conducted. The results show that biodegradability of the nanocomposites decreased and water absorption increased due to the addition of montmorillonite nanoclay. POLYM. COMPOS., 38:583–587, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
In this article, the effect of alkaline peroxide bleaching treatment using hydrogen peroxide on mengkuang leaf fiber (MLF) to the tensile, thermal properties and water absorption of thermoplastic elastomer composites based on ethylene‐vinyl acetate/natural rubber and MLF was investigated. Fiber morphology and the fiber‐matrix interface were further characterized by scanning electron microscopy (SEM). Treated composites showed better tensile properties than untreated fiber composites. SEM of the fractured surfaces of the composite specimens indicates that the bleaching treatment improved the interfacial interaction between the fiber and the matrix. The results of thermogravimetric analysis showed a higher thermal stability for treated composites than untreated composites. Furthermore, alkaline bleaching treatment has resulted in reduction of water absorption from 31% to 26% as compared with untreated composites. J. VINYL ADDIT. TECHNOL., 26:127–134, 2020. © 2019 Society of Plastics Engineers  相似文献   

17.
通过物理共混改性制备了不同玻璃纤维含量的聚对苯二甲酰戊二胺/聚己二酰戊二胺(PA5T/56)复合材料,研究了不同玻璃纤维含量对复合材料力学性能、热性能、吸水率和结晶行为的影响.结果 表明,随着玻璃纤维含量的增加,复合材料的力学性能、热稳定性得到大幅度提升,而吸水率逐渐降低.当玻璃纤维含量的质量分数达到40%时,PA5T...  相似文献   

18.
Biocomposites of kenaf fiber (KF) and polylactic acid (PLA) were prepared by an internal mixer and compression molding. PLA was plasticized with polyethylene glycol (PEG) (10 wt%) and evaluated as the polymer matrix (p‐PLA). Fiber loadings were varied between 0 and 40 wt%. The tensile, dynamic mechanical, and morphological properties and water absorption behavior of these composites were studied. Reinforcing effect of KF was observed when fiber loading exceeded 10 wt% despite of the inferior fiber‐matrix adhesion observed via scanning electron microscopy (SEM). Un‐plasticized PLA/KF composite exhibited higher tensile properties than its plasticized counterpart. Fiber breakage and heavily coated short pulled‐out of fibers were observed from the SEM micrographs of the composite. The presence of PEG might have disturbed the fiber‐matrix interaction between KF and PLA in the plasticized composites. Addition of PEG slightly improved the un‐notched impact strength of the composites. Dynamic mechanical analysis showed that the storage and loss moduli of p‐PLA/KF composites increased with the increase in fiber loading due to increasing restrictions to mobility of the polymer molecules. The tan delta of the composites in contrast showed an opposite trend. p‐PLA and p‐PLA/KF composites exhibited non‐Fickian behavior of water absorption. SEM examination revealed microcracks on p‐PLA and p‐PLA/KF surfaces. POLYM. COMPOS., 31:1213–1222, 2010. © 2009 Society of Plastics Engineers  相似文献   

19.
Coir, an important lignocellulosic fiber, can be incorporated in polymers like unsaturated polyester in different ways for achieving desired properties and texture. But its high level of moisture absorption, poor wettability and insufficient adhesion between untreated fiber and the polymer matrix lead to debonding with age. In order to improve the above qualities, adequate surface modification is required. In our present work, fiber surface modification was effected through dewaxing, alkali (5%) treatment, aqueous graft copolymerization of methyl methacrylate (MMA) onto 5% alkali treated coir for different extents using CuSO4 – NaIO4 combination as an initiator system and cyanoexhylation with a view to improve the mechanical performance of coir‐polyester composites. Mechanical properties like tensile strength (PS), flexural strength (ES) and impact strength (IS) of the composites as a function of fiber loading and fiber surface modification have been evaluated. Composites containing z5 wt% of fiber (untreated) improved tensile and flexural strength by 30% and 27% respectively in comparison to neat polyester. The work of fracture (impact strength) of the composite with 25 wt% fiber content was found to be 967 J/m. The elongation at break of the composites exhibits an increase with the introduction of fiber, All types of surface modification result In improved mechanical properties of the composites. Significant improvement in mechanical strength was also observed for composites prepared from 5% PMMA grafted fiber.  相似文献   

20.
Recycled high‐density polyethylene (RHDPE)/coir fiber (CF)‐reinforced biocomposites were fabricated using melt blending technique in a twin‐screw extruder and the test specimens were prepared in an automatic injection molding machine. Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of fly ash cenospheres (FACS) in RHDPE/CF composites were investigated. It was observed that the tensile modulus, flexural strength, flexural modulus, and hardness properties of RHDPE increase with an increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % CF and 1 wt % MA‐g‐HDPE exhibited optimum mechanical performance with an increase in tensile modulus to 217%, flexural strength to 30%, flexural modulus to 97%, and hardness to 27% when compared with the RHDPE matrix. Addition of FACS results in a significant increase in the flexural modulus and hardness of the RHDPE/CF composites. Dynamic mechanical analysis tests of the RHDPE/CF/FACS biocomposites in presence of MA‐g‐HDPE revealed an increase in storage (E′) and loss (E″) modulus with reduction in damping factor (tan δ), confirming a strong influence between the fiber/FACS and MA‐g‐HDPE in the RHDPE matrix. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties in the composites when compared with RHDPE matrix. The main motivation of this study was to prepare a value added and low‐cost composite material with optimum properties from consumer and industrial wastes as matrix and filler. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42237.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号