首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In the IEEE 802.11 wireless LAN (WLAN), the fundamental medium access control (MAC) mechanism—distributed coordination function (DCF), only supports best‐effort service, and is unaware of the quality‐of‐service (QoS). IEEE 802.11e enhanced distributed channel access (EDCA) supports service differentiation by differentiating contention parameters. This may introduce the problem of non‐cooperative service differentiation. Hence, an incompletely cooperative EDCA (IC‐EDCA) is proposed in this paper to solve the problem. In IC‐EDCA, each node that is cooperative a priori adjusts its contention parameters (e.g., the contention window (CW)) adaptively to the estimated system state (e.g., the number of competing nodes of each service priority). To implement IC‐EDCA in current WLAN nodes, a frame‐analytic estimation algorithm is presented. Moreover, an analytical model is proposed to analyze the performance of IC‐EDCA under saturation cases. Extensive simulations are also carried out to compare the performances of DCF, EDCA, incompletely cooperative game, and IC‐EDCA, and to evaluate the accuracy of the proposed performance model. The simulation results show that IC‐EDCA performs better than DCF, EDCA, and incompletely cooperative game in terms of system throughput or QoS, and that the proposed analytical model is valid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
IEEE 802.11 wireless local area networks (WLANs) have reached an important stage and become a common technology for wireless access due to its low cost, ease of deployment, and mobility support. In parallel with the extensive growth of WLANs, the development of an efficient medium access control protocol that provides both high throughput performance for data traffic and quality of service support for real‐time applications has become a major focus in WLAN research. The IEEE 802.11 Distributed Coordination Functions (DCF/EDCA) provide contention‐based distributed channel access mechanisms for stations to share the wireless medium. However, performance of these mechanisms may drop dramatically because of high collision probabilities as the number of active stations increases. In this paper, we propose an adaptive collision‐free MAC adaptation. The proposed scheme prevents collisions and allows stations to enter the collision‐free state regardless of the traffic load (saturated or unsaturated) and the number of stations on the medium. Simulation results show that the proposed scheme dramatically enhances the overall throughput and supports quality of service for real‐time services over 802.11‐based WLANs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The hybrid MAC protocol specified by IEEE 802.11ad for millimeter wave wireless LANs consist of carrier sense multiple access/collision avoidance (CSMA/CA) during the contention based access periods (CBAPs) and TDMA during the service periods. To provide channel access during CBAP, the coverage area around the access point (AP) can be divided into several quasi omni (QO) beam levels. When uplink channel access during CBAP is considered, every directional multigigabit station residing within a QO level uses CSMA/CA protocol for getting the transmission opportunity. With equal beam width receive QO levels at the AP, we present an analytical model to compute the uplink throughput of the network in the CBAP, by closely following the 802.11ad MAC protocol specifications. We demonstrate that PHY layer MCS (modulation and coding scheme) dependent adaptive selection of QO levels can improve the throughput performance. In the second part of the paper, we consider that PCP/AP can have at most three radios, each tuned to operate in non-overlapping frequency bands as specified by 802.11ad PHY. We establish that such an arrangement can lead to concurrent transmissions in the network and improve the uplink throughput performance.  相似文献   

4.
Contention free bursting (CFB) and block acknowledgement (BACK) are two innovative burst transmission schemes specified in the IEEE 802.11e standard for reducing the contention overheads and further improving the channel utilization of wireless local area networks (WLANs). Existing studies on performance analysis of the CFB and BACK schemes have been primarily focused on the system throughput and have not taken into account the realistic factors, such as unsaturated traffic loads and finite buffer capacity. To fill this gap, this paper proposes a new and comprehensive analytical model for evaluating the Quality‐of‐Service (QoS) metrics including throughput, end‐to‐end delay, and frame loss probability of both burst transmission schemes under unsaturated traffic conditions. The proposed model is validated through extensive simulation experiments and then is used to conduct performance analysis and comparison of the burst transmission schemes under various working conditions. The analytical results reveal that (1) both CFB and BACK schemes can substantially improve the QoS performance; (2) BACK scheme outperforms the CFB scheme when the transmission opportunity (TXOP) limit exceeds a threshold; (3) the analytical model can be used to identify the optimal configuration of system parameters for the burst transmission schemes subject to QoS constraints. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Performance modeling of the contention-based reservation protocol in the general packet radio service (GPRS)/enhanced GPRS (EGPRS) under bursty traffic is of practical use in system design. Instead of using discrete event simulation, we construct an analytical model based on stochastic Petri net formalism to investigate GPRS uplink performance efficiently. The model is built to capture the major features of a realistic system, taking into account factors such as the traffic profile, the system's capture capability, the contention persistence, the multislot capability, and the use of the access queue and the round-robin virtual serving queue. As shown in numerical results, these factors have different impacts on the performance measures, such as link-control-layer frame-blocking probability, frame delay, system throughput, and packet-channel utilization. To avoid modeling and computational complexity in a GPRS/EGPRS system model that supports several mobile terminals, we make first-order approximations and use an iterative fixed-point scheme. Comparisons with discrete event simulations are conducted and show promising agreement with the proposed analytical-numerical model. We then use the model to investigate GPRS packet-data performance under different parameter settings and present numerical results, providing insights into network design and optimization.  相似文献   

6.
Distributed coordination function (DCF) is the basis protocol for IEEE 802.11 standard wireless local area networks. It is based on carrier sense multiple access with collision avoidance (CSMA/CA) mechanism. DCF uses backoff process to avoid collisions on the wireless channel. The main drawback with this process is that packets have to spend time in the backoff process which is an additional overhead in their transmission time. The channel is rendered idle when all the stations defer their transmissions due to their backoff process. Therefore, the channel utilization and the total throughput on the channel can be improved by reducing the average time spent by the packets in the backoff process. In this paper, we propose a new media access coordination function called proposed media access protocol (PMAP) that will improve the channel utilization for successful packet transmission and therefore, the total achievable throughput. In addition, we propose an analytical model for PMAP under saturated conditions. We use this model to analyze the performance of PMAP under saturated conditions. To substantiate the effectiveness of our model, we have verified the model by simulating PMAP in NS‐2. Simulation and analytical results show that under saturated conditions, PMAP shows profound improvement in the throughput performance compared to DCF. In addition, the throughput performance of PMAP under unsaturated conditions is presented. We have also presented the delay performance of PMAP and DCF through simulation in both saturated and unsaturated conditions. Simulation results show that the average delay experienced by the packets is less in PMAP compared to DCF. Further, the variance in the packet delay is same for both PMAP and DCF protocols under unsaturated conditions. From the performance results obtained for PMAP under both saturated and unsaturated conditions, it can be concluded that PMAP is superior in performance compared to DCF. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The hidden‐terminal problem significantly degrades the performance of IEEE 802.11 DCF. Many previous works have investigated its influence on the throughput of CSMA‐based medium access control (MAC) protocols, especially IEEE 802.11 DCF. In this paper, we introduce a new Jamming problem for IEEE 802.11‐based mobile ad hoc networks, which is caused by hidden terminals. An analytical model is established for this problem. Based on this model, an adaptive DCF (ADCF), is designed to solve the jamming problem through adaptively adjusting the minimum contention window of hidden terminals. Simulation results effectively demonstrate that the proposed A‐DCF can avoid the jamming and in turn greatly improve channel utilization and throughput. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper develops a stochastic geometry‐based analytical approach for calculating the throughput reliability of a cloud‐radio access network (C‐RAN) comprising randomly distributed remote radio heads (RRHs) and randomly located users. A tunable distance‐based RRH transmit power control mechanism along with cooperative joint transmissions by the RRHs is employed to achieve power savings and high throughput reliability. The analytical result for the throughput reliability serves as input to analysis of per user achievable average rate and C‐RAN network‐level performance metrics of spectral efficiency and energy efficiency. The analytical results are validated by Monte Carlo simulation results with good agreement, thus confirming the accuracy of the developed analytical approach. The key finding from the analysis is that by carefully tuning the RRH transmit power and cooperation parameter (cluster radius), it is possible to realize a threefold improvement in the energy efficiency along with 108% enhancement in the spectral efficiency of C‐RANs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
IEEE 802.11 is one of the most influential wireless LAN (WLAN) standards. Point coordination function (PCF) is its medium access control (MAC) protocol with real‐time traffic (rt‐traffic) quality‐of‐service (QoS) guarantees. In PCF, it is very likely that non‐real‐time traffic (nrt‐traffic) will use the contention free period (CFP) that should be dedicated to traffic having higher priority such as rt‐traffic. Therefore, a modified PCF protocol called MPCF, which is based on hub polling and an integrated QoS differentiation, is presented in this paper. With the integrated QoS differentiation, MPCF can prioritize bandwidth requests according to service classes and QoS requirements. With hub polling, MPCF can reduce the bandwidth for control frames and improve the network throughput. A simple and accurate analytical model is derived and presented in this paper to calculate the system throughput of MPCF. Simulation results show that MPCF protocol is much better than PCF in terms of system capacity and rt‐traffic QoS guarantees. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
When two or more packets that are destined to the same output of an ATM switch arrive at different inputs, buffers at inputs or outputs are used to queue all but one of these packets so that external conflict is prevented. Although input buffering ATM switches are more economical and simpler than output buffering ATM switches, significant loss of throughput can occur in input buffering ATM switches due to head‐of‐line (HOL) blocking when first‐in–first‐out (FIFO) queueing is employed. In order to avoid both external conflict and alleviate HOL blocking in non‐blocking ATM switches, some window‐based contention resolution algorithms were proposed in the literature. In this paper, we propose a window‐based contention resolution algorithm for a blocking ATM switch based on reverse baseline network with content addressable FIFO (CAFIFO) input buffers. The proposed algorithm prevents not only external conflicts but also internal conflicts, in addition to alleviating HOL blocking. This algorithm was obtained by adapting the ring reservation algorithm used on non‐blocking ATM switches to a reverse baseline network. The fact that a non‐blocking network is replaced by a log2 N‐stage reverse baseline network yields a significant economy in implementation. We have conducted extensive simulations to evaluate the performance of reverse baseline network using the proposed window‐based contention resolution algorithm. Simulation results show that the throughput of reverse baseline network can be as good as the throughput of non‐blocking switches if the window depth of input buffers is made sufficiently large. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
The problem of determining the throughput capacity of an ad hoc network is addressed. Previous studies mainly focused on the infinite buffer scenario, however, in this paper we consider a large-scale ad hoc network with a scalable traffic model, where each node has a buffer of size B packets, and explore its corresponding per node throughput performance. We first model each node as a G/G/1/B queuing system which incorporates the important wireless interference and medium access contention. With the help of this queuing model, we then explore the properties of the throughput upper bound for all scheduling schemes. Based on these properties, we further develop an analytical approach to derive the expressions of per node throughput capacity for the concerned buffer-limited ad hoc network. The results show that the cumulative effect of packet loss due to the per hop buffer overflowing will degrade the throughput performance, and the degradation is inversely proportional to the buffer size. Finally, we provide the specific scheduling schemes which enable the per node throughput to approach its upper bound, under both symmetrical and unsymmetrical network topologies.  相似文献   

12.
In this paper, an analytical model is proposed to calculate the network throughput of dedicated control channel protocols that are designed to schedule multiple packets to be transmitted on different data channels simultaneously. Based on the analytical model, a scheme by tuning the initial contention window size is proposed to maximize the network throughput. We also present a novel multi‐channel MAC protocol for single‐hop scenario. Simulation results show that the proposed model is capable of modeling the behaviors of dedicated control channel protocols accurately. Furthermore, the proposed scheme can reduce the cost of collisions and enhance the network throughput up to 22% for 1 kB packet size and 80 nodes. Compared with other dedicated control channel protocols, the proposed protocol can schedule more control packets and use multiple channels more efficiently. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Most of analysis so far for IEEE 802.11 wireless local area networks (WLANs) focuses on saturated condition. However, it is of practical value to take into account the unsaturation case. In this paper, we modified Bianchi's Markov back‐off model to make it applicable to unsaturated condition and the analytic results are provided by employing the renewal‐reward theorem. Under our proposed model, we study the fixed‐point solution of the system and provide a condition to guarantee both the uniqueness and balance of the fixed point. From the fixed point, we find that under unsaturated condition, network parameters should be adjusted according to the traffic load. Then, we study the system throughput. In the case where there are a large number of nodes, we provide closed‐form formulas for the collision probability, the aggregate attempt rate, and the throughput. We find that in such a scenario, the system yields similar performance as that under saturated situation. Moreover, we compare all the results with those under saturated condition and find the latter is a special case of our results. Hence, all of our analysis based on unsaturated condition well covers saturated condition. Our analytical results are validated through ns2 simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A common way of achieving reliable data transmission in wireless sensor network applications is by using a retransmission mechanism with medium access control (MAC) level acknowledgements. The IEEE 802.15.4 standard, which is widely acknowledged as the state-of-the-art PHY/MAC standard for wireless sensor networks, supports MAC-level acknowledgements and retransmissions. In this paper, based on a three-dimensional discrete-time Markov chain, we propose a new analytical model to analyse the performance of the IEEE 802.15.4 MAC protocol with retransmission and MAC level acknowledgements under unsaturated traffic conditions. Further, we present a simplified version of the proposed analytical model with some approximations. Using the proposed analytical models, we evaluate the network performance in terms of the aggregate channel throughput, average power consumption of a node, frame discard ratio, and frame delivery ratio. The analytical results are substantiated through ns?2 simulations. The effects of the frame arrival rate, number of nodes, frame length and various MAC parameters, on the performance of the network are discussed. The results of both analytical models are compared and it is shown that the simplified model provides an acceptable accuracy with less computational complexity.  相似文献   

15.
A major concern in optical burst-switched networks is contention,which occurs when multiple bursts contend for the same link. While a deflection routing protocol is proposed as one of the contention resolution techniques,there has been no appropriate deflection routing algorithm to find an alternate route. In this paper, we formulate a deflection routing problem based on the burst blocking rate resulting from resource contention in an optical burst-switched network. This algorithm minimizes the contention on the alternate path with the minimum distance. Furthermore, in this paper, we develop an analytical model for the deflection routing time when deflection routing is performed to resolve contention. In this model, we investigate the expected deflection routing time considering that the burst could be dropped even with deflection routing due to another contention on the alternate path. Simulations are conducted to show that there is an improvement in terms of burst loss rate and network throughput.  相似文献   

16.
In WiMAX networks, contention based bandwidth requests are allowed in the uplink channel on the time division duplexing frame. The standard allows some types of traffic classes to use this period while preventing others like Unsolicited Grant Service. In this study, we provide a performance analysis of the three types of connections (ertPS, non-real time Polling Service and Best Effort) that are allowed to contend for bandwidth request opportunities. The choice of these traffic classes covers both real and non-real traffic types. Two quality of service parameters; contention probability and average connection delay are investigated in order to evaluate the network performances. Different levels of priority and blocking probability are assigned to each class of service. This performance analysis has been done using an analytical model for evaluating admission control for the previous mentioned classes in WiMAX network.  相似文献   

17.
As the Internet evolves from a packet network supporting a single best effort service class towards an integrated infrastructure supporting several service classes—some with QoS guarantees—there is a growing interest in the introduction of admission control and in devising bandwidth sharing strategies, which meet the diverse needs of QoS‐assured and elastic services. In this paper we show that the extension of the classical multi‐rate loss model is possible in a way that makes it useful in the performance analysis of a future admission control based Internet that supports traffic with peak rate guarantee as well as elastic traffic. After introducing the model, it is applied for the analysis of a single link, where it sheds light on the trade‐off between blocking probability and throughput. For the investigation of this trade‐off, we introduce the throughput‐threshold constraint, which bounds the probability that the throughput of a traffic flow drops below a predefined threshold. Finally, we use the model to determine the optimal parameter set of the popular partial overlap link allocation policy: we propose a computationally efficient algorithm that provides blocking probability‐ and throughput guarantees. We conclude that the model and the numerical results provide important insights in traffic engineering in the Internet. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
A Cross-Layer Approach for WLAN Voice Capacity Planning   总被引:1,自引:0,他引:1  
This paper presents an analytical approach to determining the maximum number of on/off voice flows that can be supported over a wireless local area network (WLAN), under a quality of service (QoS) constraint the authors consider multiclass distributed coordination function (DCF) based medium access control (MAC) that can provision service differentiation via contention window (CW) differentiation. Each on/off voice flow specifies a stochastic delay bound at the network layer as the QoS requirement. The downlink voice flows are multiplexed at the access point (AP) to alleviate the MAC congestion, where the AP is assigned a smaller CW compared to that of the mobile nodes to guarantee the aggregate downlink throughput. There are six-fold contributions in this paper: 1) a nonsaturated multiclass DCF model is developed; 2) a cross-layer framework is proposed, which integrates the network-layer queueing analysis with the multiclass DCF MAC modeling; 3) the channel busyness ratio control is included in the framework to guarantee the analysis accuracy; 4) the framework is exploited for statistical multiplexing gain analysis, network capacity planning, contention window optimization, and voice traffic rate design; 5) a head-of-line outage dropping (HOD) scheme is integrated with the AP traffic multiplexing to further improve the MAC channel utilization; 6) performance of the proposed cross-layer analysis and the associated applications are validated by extensive computer simulations.  相似文献   

19.
In a multirate wireless LAN, wireless/mobile stations usually adapt their transmission rates to the channel condition. It is difficult to control each station's usage of network resources since the shared channel can be overused by low transmission-rate stations. To solve this problem, we propose a distributed control of stations' airtime usage which 1) always guarantees each station to receive a specified share of airtime, and 2) keeps service for individual stations unaffected by other stations' transmission rates. Such airtime control enables service differentiation or quality of service (QoS) support. Moreover, it can achieve a higher overall system throughput. The proposed airtime usage control exploits the Enhanced Distributed Channel Access (EDCA) of the IEEE 802.11e standard . Two control mechanisms are proposed: one based on controlling the station's arbitration inter-frame space (AIFS) and the other based on the contention window size. We show how the stations' airtime usage is related to the AIFS and contention window size parameters. Using this relation, two analytical models are developed to determine the optimal control parameters. Unlike the other heuristic controls or analytical models, our model provides handles or parameters for quantitative control of stations' airtime usage. Our evaluation results show that a precise airtime usage control can be achieved in a multirate wireless LAN  相似文献   

20.
In this paper, we generalize the random access game model, and show that it provides a general gametheoretic framework for designing contention based medium access control. We extend the random access game model to the network with multiple contention measure signals, study the design of random access games, and analyze different distributed algorithms achieving their equilibria. As examples, a series of utility functions is proposed for games achieving the maximum throughput in a network of homogeneous nodes. In a network with n traffic classes, an N-signal game model is proposed which achieves the maximum throughput under the fairness constraint among different traffic classes. In addition, the convergence of different dynamic algorithms such as best response, gradient play and Jacobi play under propagation delay and estimation error is established. Simulation results show that game model based protocols can achieve superior performance over the standard IEEE 802.11 DCF, and comparable performance as existing protocols with the best performance in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号