首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The liquid–liquid phase separation (LLPS) of biomolecules is a phenomenon which is nowadays recognized as the driving force for the biogenesis of numerous functional membraneless organelles and cellular bodies. The interplay between the protein primary sequence and phase separation remains poorly understood, despite intensive research. To uncover the sequence-encoded signals of protein capable of undergoing LLPS, we developed a novel web platform named BIAPSS (Bioinformatics Analysis of LLPS Sequences). This web server provides on-the-fly analysis, visualization, and interpretation of the physicochemical and structural features for the superset of curated LLPS proteins.  相似文献   

2.
3.
Liquid–liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles, representing functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integrating the data on LLPS-associated proteins from dedicated databases revealed only modest agreement between them and yielded a high-confidence dataset of 89 human LLPS drivers. Analysis of the supporting evidence for our dataset uncovered a systematic and potentially concerning difference between protein concentrations used in a good fraction of the in vitro LLPS experiments, a key parameter that governs the phase behavior, and the proteomics-derived cellular abundance levels of the corresponding proteins. Closer scrutiny of the underlying experimental data enabled us to offer a sound rationale for this systematic difference, which draws on our current understanding of the cellular organization of the proteome and the LLPS process. In support of this rationale, we find that genes coding for our human LLPS drivers tend to be dosage-sensitive, suggesting that their cellular availability is tightly regulated to preserve their functional role in direct or indirect relation to condensate formation. Our analysis offers guideposts for increasing agreement between in vitro and in vivo studies, probing the roles of proteins in LLPS.  相似文献   

4.
The liquid–liquid phase separation (LLPS) of proteins has been found ubiquitously in eukaryotic cells, and is critical in the control of many biological processes by forming a temporary condensed phase with different bimolecular components. TDP-43 is recruited to stress granules in cells and is the main component of TDP-43 granules and proteinaceous amyloid inclusions in patients with amyotrophic lateral sclerosis (ALS). TDP-43 low complexity domain (LCD) is able to de-mix in solution, forming the protein condensed droplets, and amyloid aggregates would form from the droplets after incubation. The molecular interactions regulating TDP-43 LCD LLPS were investigated at the protein fusion equilibrium stage, when the droplets stopped growing after incubation. We found the molecules in the droplet were still liquid-like, but with enhanced intermolecular helix–helix interactions. The protein would only start to aggregate after a lag time and aggregate slower than at the condition when the protein does not phase separately into the droplets, or the molecules have a reduced intermolecular helix–helix interaction. In the protein condensed droplets, a structural transition intermediate toward protein aggregation was discovered involving a decrease in the intermolecular helix–helix interaction and a reduction in the helicity. Our results therefore indicate that different intermolecular interactions drive LLPS and fibril formation. The discovery that TDP-43 LCD aggregation was faster through the pathway without the first protein phase separation supports that LLPS and the intermolecular helical interaction could help maintain the stability of TDP-43 LCD.  相似文献   

5.
6.
In live cells, proteins and nucleic acids can associate together through multivalent interactions, and form relatively isolated phases that undertake designated biological functions and activities. In the past decade, liquid–liquid phase separation (LLPS) has gradually been recognized as a general mechanism for the intracellular organization of biomolecules. LLPS regulates the assembly and composition of dozens of membraneless organelles and condensates in cells. Due to the altered physiological conditions or genetic mutations, phase-separated condensates may undergo aberrant formation, maturation or gelation that contributes to the onset and progression of various diseases, including neurodegenerative disorders and cancers. In this review, we summarize the properties of different membraneless organelles and condensates, and discuss multiple phase separation-regulated biological processes. Based on the dysregulation and mutations of several key regulatory proteins and signaling pathways, we also exemplify how aberrantly regulated LLPS may contribute to human diseases.  相似文献   

7.
Epidermal keratinocyte proteins include many with an eccentric amino acid content (compositional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profilaggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid–liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinformatic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte-specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology.  相似文献   

8.
The microtubule-associated protein tau can undergo liquid–liquid phase separation (LLPS) to form membraneless condensates in neurons, yet the underlying molecular mechanisms and functions of tau LLPS and tau droplets remain to be elucidated. The human brain contains mainly 6 tau isoforms with different numbers of microtubule-binding repeats (3R, 4R) and N-terminal inserts (0N, 1N, 2N). However, little is known about the role of N-terminal inserts. Here we observed the dynamics of three tau isoforms with different N-terminal inserts in live neuronal cell line HT22. We validated tau LLPS in cytoplasm and found that 2N-tau forms liquid-like, hollow-shell droplets. Tau condensates became smaller in 1N-tau comparing with 2N-tau, while no obvious tau accumulated dots were shown in 0N-tau. The absence of N-terminal inserts significantly affected condensate colocalization of tau and p62. The results reveal insights into the tau LLPS assembly mechanism and functional effects of N-terminal inserts in tau.  相似文献   

9.
The π–π interaction is a major driving force that stabilizes protein assemblies during protein folding. Recent studies have additionally demonstrated its involvement in the liquid–liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs). As the participating residues in IDPs are exposed to water, π–π interactions for LLPS must be modeled in water, as opposed to the interactions that are often established at the hydrophobic domains of folded proteins. Thus, we investigated the association of free energies of benzene and phenol dimers in water by integrating van der Waals (vdW)-corrected density functional theory (DFT) and DFT in classical explicit solvents (DFT-CES). By comparing the vdW-corrected DFT and DFT-CES results with high-level wavefunction calculations and experimental solvation free energies, respectively, we established the quantitative credibility of these approaches, enabling a reliable prediction of the benzene and phenol dimer association free energies in water. We discovered that solvation influences dimer association free energies, but not significantly when no direct hydrogen-bond-type interaction exists between two monomeric units, which can be explained by the enthalpy–entropy compensation. Our comprehensive computational study of the solvation effect on π–π interactions in water could help us understand the molecular-level driving mechanism underlying the IDP phase behaviors.  相似文献   

10.
11.
12.
Membrane-less organelles (MLOs) are formed by biomolecular liquid–liquid phase separation (LLPS). Proteins with charged low-complexity domains (LCDs) are prone to phase separation and localize to MLOs, but the mechanism underlying the distributions of such proteins to specific MLOs remains poorly understood. Recently, proteins with Arg-enriched mixed-charge domains (R-MCDs), primarily composed of R and Asp (D), were found to accumulate in nuclear speckles via LLPS. However, the process by which R-MCDs selectively incorporate into nuclear speckles is unknown. Here, we demonstrate that the patterning of charged amino acids and net charge determines the targeting of specific MLOs, including nuclear speckles and the nucleolus, by proteins. The redistribution of R and D residues from an alternately sequenced pattern to uneven blocky sequences caused a shift in R-MCD distribution from nuclear speckles to the nucleolus. In addition, the incorporation of basic residues in the R-MCDs promoted their localization to the MLOs and their apparent accumulation in the nucleolus. The R-MCD peptide with alternating amino acids did not undergo LLPS, whereas the blocky R-MCD peptide underwent LLPS with affinity to RNA, acidic poly-Glu, and the acidic nucleolar protein nucleophosmin, suggesting that the clustering of R residues helps avoid their neutralization by D residues and eventually induces R-MCD migration to the nucleolus. Therefore, the distribution of proteins to nuclear speckles requires the proximal positioning of D and R for the mutual neutralization of their charges.  相似文献   

13.
Protein–protein interactions (PPIs) outnumber proteins and are crucial to many fundamental processes; in consequence, PPIs are associated with several pathological conditions including neurodegeneration and modulating them by drugs constitutes a potentially major class of therapy. Classically, however, the discovery of small molecules for use as drugs entails targeting individual proteins rather than targeting PPIs. This is largely because discovering small molecules to modulate PPIs has been seen as extremely challenging. Here, we review the difficulties and limitations of strategies to discover drugs that target PPIs directly or indirectly, taking as examples the disordered proteins involved in neurodegenerative diseases.  相似文献   

14.
Optimal design of a liquid‐liquid settler requires experimental investigation on phase separation behavior of the used material system under the same operating conditions as in the technical application. Performing these experiments and evaluating the obtained data is highly time‐consuming. To reduce manual effort, the procedure was largely automated. In this work, the experimental setup, the automated procedure, and its validation results at various operating temperatures are presented. The results show the suitability of the automated procedure and the influence of temperature on phase separation behavior of the liquid‐liquid system 1‐octanol/water.  相似文献   

15.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin–Angiotensin–Aldosterone System (RAAS) and Kinin–Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.  相似文献   

16.
Understanding the interaction of ions with organic receptors in confined space is of fundamental importance and could advance nanoelectronics and sensor design. In this work, metal ion complexation of conformationally varied thiacalix[4]monocrowns bearing lower-rim hydroxy (type I), dodecyloxy (type II), or methoxy (type III) fragments was evaluated. At the liquid–liquid interface, alkylated thiacalixcrowns-5(6) selectively extract alkali metal ions according to the induced-fit concept, whereas crown-4 receptors were ineffective due to distortion of the crown-ether cavity, as predicted by quantum-chemical calculations. In type-I ligands, alkali-metal ion extraction by the solvent-accessible crown-ether cavity was prevented, which resulted in competitive Ag+ extraction by sulfide bridges. Surprisingly, amphiphilic type-I/II conjugates moderately extracted other metal ions, which was attributed to calixarene aggregation in salt aqueous phase and supported by dynamic light scattering measurements. Cation–monolayer interactions at the air–water interface were monitored by surface pressure/potential measurements and UV/visible reflection–absorption spectroscopy. Topology-varied selectivity was evidenced, towards Sr2+ (crown-4), K+ (crown-5), and Ag+ (crown-6) in type-I receptors and Na+ (crown-4), Ca2+ (crown-5), and Cs+ (crown-6) in type-II receptors. Nuclear magnetic resonance and electronic absorption spectroscopy revealed exocyclic coordination in type-I ligands and cation–π interactions in type-II ligands.  相似文献   

17.
Membrane-less biomolecular compartmentalization is a core phenomenon involved in many physiological activities that occur ubiquitously in cells. Condensates, such as promyelocytic leukemia (PML) bodies, stress granules, and P-bodies (PBs), have been investigated to understand the process of membrane-less cellular compartmentalization. In budding yeast, PBs dispersed in the cytoplasm of exponentially growing cells rapidly accumulate in response to various stresses such as osmotic stress, glucose deficiency, and heat stress. In addition, cells start to accumulate PBs chronically in post-exponential phases. Specific protein–protein interactions are involved in accelerating PB accumulation in each circumstance, and discovering the regulatory mechanism for each is the key to understanding cellular condensation. Here, we demonstrate that Nst1 of budding yeast Saccharomyces cerevisiae is far more densely associated with PBs in post-exponentially growing phases from the diauxic shift to the stationary phase than during glucose deprivation of exponentially growing cells, while the PB marker Dcp2 exhibits a similar degree of condensation under these conditions. Similar to Edc3, ectopic Nst1 overexpression induces self-condensation and the condensation of other PB components, such as Dcp2 and Dhh1, which exhibit liquid-like properties. Altogether, these results suggest that Nst1 has the intrinsic potential for self-condensation and the condensation of other PB components, specifically in post-exponential phases.  相似文献   

18.
19.
We previously discovered that exogenously expressed GFP-tagged cytoplasmic human myxovirus resistance protein (MxA), a major antiviral effector of Type I and III interferons (IFNs) against several RNA- and DNA-containing viruses, existed in the cytoplasm in phase-separated membraneless biomolecular condensates of varying sizes and shapes with osmotically regulated disassembly and reassembly. In this study we investigated whether cytoplasmic IFN-α-induced endogenous human MxA structures were also biomolecular condensates, displayed hypotonic osmoregulation and the mechanisms involved. Both IFN-α-induced endogenous MxA and exogenously expressed GFP-MxA formed cytoplasmic condensates in A549 lung and Huh7 hepatoma cells which rapidly disassembled within 1–2 min when cells were exposed to 1,6-hexanediol or to hypotonic buffer (~40–50 mOsm). Both reassembled into new structures within 1–2 min of shifting cells to isotonic culture medium (~330 mOsm). Strikingly, MxA condensates in cells continuously exposed to culture medium of moderate hypotonicity (in the range one-fourth, one-third or one-half isotonicity; range 90–175 mOsm) first rapidly disassembled within 1–3 min, and then, in most cells, spontaneously reassembled 7–15 min later into new structures. This spontaneous reassembly was inhibited by 2-deoxyglucose (thus, was ATP-dependent) and by dynasore (thus, required membrane internalization). Indeed, condensate reassembly was preceded by crowding of the cytosolic space by large vacuole-like dilations (VLDs) derived from internalized plasma membrane. Remarkably, the antiviral activity of GFP-MxA against vesicular stomatitis virus survived hypoosmolar disassembly and subsequent reassembly. The data highlight the exquisite osmosensitivity of MxA condensates, and the preservation of antiviral activity in the face of hypotonic stress.  相似文献   

20.
The aim of this research was to develop a simple and efficient ion-pair reagent-free chromatographic method for the separation and qualitative determination of oligonucleotide impurities, exemplified by synthesis of raw products of the two single strands of patisiran siRNA. The stationary phases with mixed hydrophobic/hydrophilic properties (cholesterol and alkylamide) were firstly used for this purpose with reversed-phased high-performance liquid chromatography. Several different chromatographic parameters were tested for their impact on impurities separation: type, concentration, pH of salt, as well as organic solvent type in the mobile phase. The pH was the most influential factor on the separation and signal intensities in mass spectrometry detection. Finally, the optimized method included the application of cholesterol stationary phase, with mobile phase containing 20 mM ammonium formate (pH 6.5) and methanol. It allowed good separation and the identification of most impurities within 25 min. Since not all closely related impurities could be fully resolved from the main peak in this oligonucleotide impurity profiling, two-dimensional liquid chromatography was used for peak purity determination of the target oligonucleotides. The Ethylene Bridged Hybrid (BEH) Amide column in hydrophilic interaction liquid chromatography was applied in the second dimension, allowing additional separation of three closely related impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号