首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties and morphology of polypropylene/wood flour (PP/WF) composites with different impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. Two different ethylene/propylene/diene terpolymers (EPDM) and one maleated styrene–ethylene/butylene–styrene triblock copolymer (SEBS–MA) have been used as impact modifiers in the PP/WF systems. All three elastomers increased the impact strength of the PP/WF composites but the addition of maleated EPDM and SEBS gave the greatest improvements in impact strength. Addition of MAPP did not affect the impact properties of the composites but had a positive effect on the composite unnotched impact strength when used together with elastomers. Tensile tests showed that MAPP had a negative effect on the elongation at break and a positive effect on tensile strength. The impact modifiers were found to decrease the stiffness of the composites. Scanning electron microscopy showed that maleated EPDM and SEBS had a stronger affinity for the wood surfaces than did the unmodified EPDM. The maleated elastomers are, therefore, expected to form a flexible interphase around the wood particles giving the composites better impact strength. MAPP further enhanced adhesion between WF and impact-modified PP systems. EPDM and EPDM–MA rubber domains were homogeneously dispersed in the PP matrix, the diameter of domains being between 0.1–1 μm. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1503–1513, 1998  相似文献   

2.
采用熔融挤出共混的方法,选用三种废胶粉填充聚丙烯(PP),制备了PP/废胶粉复合材料,研究了废胶粉质量分数对复合材料力学性能的影响.结果表明:废旧三元乙丙橡胶粉可明显提高复合材料冲击强度和拉伸断裂应变,当其质量分数为60%时,简支梁缺口冲击强度可提高33%,拉伸断裂应变增大了26%,有显著的增韧效果:废旧杂胶粉的加入使...  相似文献   

3.
Hemp fibers and particles, with different sizes and contents, were used to make hybrid composites based on recycled polypropylene (PP). In particular, the effect of maleated polypropylene (MAPP) addition on the morphology and mechanical properties is reported. The results show that better adhesion is obtained with MAPP addition. In general, fiber content and size had a substantial effect on the tensile, flexural, torsion, and impact properties of the resulting composites. Although, adding MAPP to the samples improved the impact strength of the composites, the values were always lower than neat PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Conifer fibers were used to reinforce polypropylene (PP). To improve the compatibility between the conifer fibers and the PP matrix, the fibers were either grafted with maleated PP (MAPP), treated by adding MAPP, or mixed with ethylene/propylene/diene terpolymer (EPDM). The treatments resulted in improved processing, as well as improvements in the thermal and mechanical properties of the resultant composites compared with the composites filled with untreated conifer fibers. Moreover, MAPP grafting and MAPP treating displayed more obvious benefits than EPDM treating in terms of thermal properties, processing flowability, and tensile strength improvements. EPDM treating also produced more significant benefits than either MAPP grafting or MAPP treating in terms of impact strength and tensile elongation improvements. These improvements were attributed to surface coating of the fibers when EPDM was used. In addition, the effect of the concentration of the conifer fibers on the properties of the composites and the difference between MAPP grafting and MAPP treating were evaluated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2833–2841, 2001  相似文献   

5.
余旺旺  刘芹  张莹  杨晨  雷文 《中国塑料》2020,34(10):6-11
研究了马来酸酐接枝聚丙烯(MAPP)、乙烯丙烯酸共聚物(EAA)处理对聚丙烯(PP) /小麦秸秆粉(WSP)复合材料性能的影响。结果表明,随着体系中MAPP质量份数的增加,PP/WSP的拉伸强度和弯曲强度均逐渐增大,但冲击强度却先增加后减小,复合材料达到塑化峰的时间逐渐延长;使用EAA后,无论体系中是否已经使用了MAPP,PP/WSP的拉伸、弯曲和冲击强度均可得以提高,特别对于未使用MAPP的体系,效果更加明显,可分别提高65.04 %、45.42 %和6.75 %,储能模量增加,表面疏水性增强,平衡扭矩从13.9 N·m降至11.8 N·m,吸水尺寸变化率及吸水率下降,吸水平衡时间缩短;使用EAA可改善PP/WSP中WSP与PP间的界面结合,改善PP/WSP力学性能、热稳定性能、表面疏水性能、尺寸稳定性能和加工性能,降低其吸水率。  相似文献   

6.
Composites of polypropylene (PP) with mica powder and impact modifiers were produced by internal mixer. A major drawback in the use of mica‐filled PP is its low impact resistance. In the present study, the effect of the maleated PP (MAPP) and impact modifiers was evaluated on the composite properties separately and together. Thus, two different styrene‐ethylene/butylene‐styrene triblock copolymers (SEBS) and one ethylene‐propylene‐diene terpolymer (EPDM) have been used as impact modifiers in the PP‐mica composites. Addition of MAPP had a negative effect on the composite notched impact strength and elongation at break but had a positive effect on tensile strength when used together with impact modifiers. All three elastomers increased the impact strength of the PP‐mica composites but the addition of maleated SEBS (SEBS‐MA) granted the greatest improvement in impact strength. It was inferred from the scanning electron microscopy that SEBS‐MA had a stronger interaction with mica surface than the other impact modifiers. POLYM. COMPOS., 27:614–620, 2006. © 2006 Society of Plastics Engineers  相似文献   

7.
The effect of two compatibilizers, i.e. ethylene diamine dilaurate (EDD) and maleic anhydride grafted polypropylene (MAPP) on the mechanical properties, water absorption, morphology, and thermal properties of silica‐filled polypropylene (PP/Sil) composites were studied. The results show that the tensile, impact and flexural strengths (up to 2 php), Young's modulus, and elongation at break (Eb) increased with increasing EDD content. However, increasing MAPP content increases the tensile strength, Young's modulus, impact and flexural strengths, and water absorption resistance. At a similar compatibilizer content, EDD exhibits higher Eb, impact and flexural strengths but lowers tensile strength, Young's modulus, and water absorption resistance compared with MAPP. Scanning electron microscopy study of tensile fractured surfaces exhibits the evidence of better silica‐PP adhesion with MAPP and EDD compared with the similar composites but without compatibilizer. Fourier transform infra red spectra provide an evidence of interaction between EDD or MAPP with PP/Sil composites. Termogravimetry analysis results indicate that the addition of EDD or MAPP slightly increases the thermal stability of PP/Sil composites. Differential scanning calorimetry also indicates that PP/Sil composites with EDD or MAPP have higher heat fusion (ΔHf(com)) and crystallinity (Xcom) than similar composites but without compatibilizer. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
In this study, polypropylene/ethylene–octene copolymer (PP/POE) blends, PP/talc, and PP/POE/micro‐talc (MT) composites were fabricated using a twin screw. To estimate the performances of the PP/POE blends, PP/talc, and PP/POE/MT composites, mechanical properties, heat deflection temperature (HDT), thermomechanical analysis, and isothermal crystallization characterization were conducted. Incorporating talc particles increased the tensile strength, flexural properties, and HDT of the PP matrix, but reduced the elongation at break and notched impact strength. The inclusion of POE elastomers in the PP matrix yielded the opposite effect on PP/talc composites. PP/POE/MT composites provide a compromise that improves both the flexural properties and notched impact strength. Moreover, the inclusion of talc particles in PP/POE blends induced heterogeneous nucleation and considerably reduced the crystallization time. Consequently, the time required for processing was also greatly reduced. POLYM. COMPOS., 36:69–77, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
软木纤维增强PP复合材料的研究   总被引:9,自引:0,他引:9  
采用软木纤维作为增强材料提高聚丙烯性能。为了改善软木纤维和聚丙烯母体之间的相容性,用马来酸酐接枝聚丙烯(MAPP)对软木纤维进行接枝处理,用MAPP或用三元乙丙橡胶(EPDM)对软木纤维进行改性处理。结果表明,与未经处理木纤维的复合材料相比,三种处理方法都使复合材料的热性能、加工性能和力学性能有了较大的提高。用MAPP接枝和用MAPP表面处理木纤维的方法比用EPDM表面处理木纤维的方法在提高复合材料热性能、加工流动性和拉伸强度方面更为显著。用EPDM表面处理木纤维在改善复合材料的冲击强度、断裂伸长率上更明显。此外,木纤维在复合材料中的浓度对复合材料其它性能的影响,以及MAPP接枝木纤维和MAPP处理木纤维的不同实验结果也进行了评价。  相似文献   

10.
Ink‐eliminated sludge flour (IESF), a waste residue from the recycling treatment of waste paper, is a promising new kind of filler for thermoplastic polymers with a good price/performance ratio and advantages for environmental protection. In this study, high‐impact polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were chosen as a polymer matrix and a coupling agent, respectively, for the preparation of IESF/PP composites, and the structures and properties of the obtained composites were also investigated. The experimental results revealed that IESF not only induced the crystallization orientation of PP along the b axis but also had a restraining effect on the formation of the β phase during the recrystallization of PP from the melt; the addition of MAPP further strengthened this effect to some extent. In addition, the proper addition of MAPP was helpful for improving the thermal stability of the IESF/PP composites. With the strengthening of the interfacial interaction between the IESF and PP matrix by MAPP, the resultant efficient stress transfer from the PP matrix to the IESF particles led to increased tensile and flexural strength. However, the original greater rigidity of MAPP, with respect to PP, reduced the toughness of the composites and caused some negative effects on the impact strength and the elongation at break. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2320–2325, 2004  相似文献   

11.
In this study, the hybrid composites were prepared by stacking jute/PP nonwoven and flax/MAPP woven fabrics in defined sequences. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as matrix materials. Jute and flax fibers were treated with alkali solution in order to improve the interface properties of the resultant composites. The mechanical properties of these hybrid composites were analyzed by means of tensile, flexural, and drop‐weight impact tests. The effect of fabric stacking sequence on the mechanical properties of the composites was investigated. The stacking of nonwovens at the top and in alternate layers has resulted in maximum flexural strength, flexural stiffness, and impact force. It was also shown that hybrid composites have improved tensile, flexural, and impact properties in comparison to neat PP matrix. POLYM. COMPOS., 36:2167–2173, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
Hybrid composites of polypropylene (PP), reinforced with short banana and glass fibers were fabricated using Haake torque rheocord followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both fibers into PP matrix resulted in increase of tensile strength, flexural strength, and impact strength upto 30 wt% with an optimum strength observed at 2 wt% MAPP treated 15 wt% banana and 15 wt% glass fiber. The rate of water absorption for the hybrid composites was decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has been analyzed to investigate the interfacial properties. An increase in storage modulus (E′) of the treated‐composite indicates higher stiffness. The loss tangent (tan δ) spectra confirms a strong influence of fiber loading and coupling agent concentration on the α and β relaxation process of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out through differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA), indicated an increase in the crystallization temperature and thermal stability of PP with the incorporation of MAPP‐treated banana and glass fiber. POLYM. COMPOS., 31:1247–1257, 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Thermoplastics reinforced with natural fibers have attracted much attention from researchers because of their advantages, especially regarding environmental aspects. However, poor impact strength, particularly at low temperatures, limits the application of some thermoplastics, such as polypropylene (PP). To minimize this drawback, impact modifiers have been used, including the terpolymer of ethylene‐propylene‐diene (EPDM). In this work, PP/EPDM/sisal composites of distinct compositions were investigated focusing on the effect of the alkali (NaOH) treatment of the vegetable fiber on the composites properties regarding physical, mechanical, thermal, and morphological behavior. The results indicated that flow rate decreases at higher fiber content due to flow hindering by the presence of the fibers. The addition of the fiber, in general, increased Young's modulus and strength (tensile and flexural), whereas impact strength increased for higher EPDM content. The alkali treatment was considered generally efficient in terms of mechanical properties, even though this was not found in the dynamic mechanical analysis. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
《Polymer Composites》2017,38(8):1749-1755
Wood flour (WF)‐filled composites based on a polypropylene (PP)/recycled polyethylene terephthalate (r‐PET) matrix were prepared using two‐step extrusion. Maleic anhydride grafted polypropylene (MAPP) was added to improve the compatibility between polymer matrices and WF. The effects of filler and MAPP compatibilization on the water absorption, mechanical properties, and morphological features of PP/r‐PET/WF composites were investigated. The addition of MAPP significantly improved mechanical properties such as tensile strength, flexural strength, tensile modulus, and flexural modulus compared with uncompatibilized composites, but decreased elongation at break. Scanning electron microscopic images of fracture surface specimens revealed better interfacial interaction between WF and polymer matrix for MAPP‐compatibilized PP/r‐PET/WF composites. MAPP‐compatibilized PP/r‐PET/WF composites also showed reduced water absorption due to improved interfacial bonding, which limited the amount of absorbable water molecules. These results indicated that MAPP acts as an effective compatibilizer in PP/r‐PET/WF composites. POLYM. COMPOS., 38:1749–1755, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
With the rising cost of petroleum‐based fibers, the utilization of plant fibers in the manufacture of polymer–matrix composites is gaining importance worldwide. The scope of this study was to examine the perspective of the use of pineapple leaf fibers (PALFs) as reinforcements for polypropylene (PP). These fibers are environmentally friendly, low‐cost byproducts of pineapple cultivation and are readily available in the northeastern region of India. Here, both untreated and treated pineapple fibers were used. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizing agent. The polymer matrix of PP was used to prepare composite specimens with different volume fractions (5–20%) of fibers by the addition of 5% of MA‐g‐PP. These specimens were tested for their mechanical properties, and additional assessments were made via observations by scanning electron microscopy, thermogravimetric analysis, and IR spectroscopy. Increase in the impact behavior, flexural properties, and tensile moduli of the composites were noticed, and these were more appreciable in the treated fibers mixed with MA‐g‐PP. PALF in 10 vol % in PP mixed with MA‐g‐PP was the optimum and recommended composition, where the flexural properties were the maximum. The impact strength and the tensile modulus were also considerably high. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
采用挤出注塑法以废旧聚丙烯(WPP)为基体、废弃线路板非金属粉(WPCBN)为填料制备了复合材料。考察了WPCBN对材料阻燃性能及力学性能的影响。通过红外光谱和扫描电子显微镜分析研究了WPCBN改性前后官能团结构及复合材料冲击断面形貌的差异,以探讨硅烷偶联剂(KH550)、马来酸酐接枝聚丙烯(MAPP)对WPP/WPCBN界面相容性改善及复合材料力学性能提高的作用机理。结果表明,WPCBN超过10 phr后复合材料具有自熄性;经1.5 phr KH550改性后,WPCBN与WPP间的界面黏结力增强,复合材料拉伸、弯曲及冲击强度分别提高6.5%、6.25%和17.9%;m(WPP):m(WPCBN):m(MAPP)为100:30:9时,复合材料的拉伸、弯曲强度增幅最大,分别为37.5%和48.8%;WPP/WPCBN与新聚丙烯(NPP)/WPCBN复合材料相比,拉伸、弯曲强度仅降低16.8%、20.4%。  相似文献   

17.
Ink‐eliminated sludge flour (IESF), waste residue from the recycling treatments of waste paper, was utilized as a new kind of filler to reinforce polypropylene (PP) in this research work. Different coupling agents, including maleated anhydride grafted PP (MAPP), stearic acid (SA), and titanate (NDZ‐101), were used to increase the compatibility between IESF and PP. By using different measurements, the microstructure, morphology, thermal behaviors, and mechanical properties of the IESF/PP composites were investigated in detail. It was found that IESF, as a nucleation agent, not only induced the crystallization orientation of PP but also accelerate the crystallization rate of PP. Just as indicated in the experiments, the presence of IESF has shown the advantages of increasing the dimensional stability, the hardness and the flexural property, and the presence of coupling agents has a favorable effect on the improvement of dimensional stability. Moreover, the coupling agent has minor influence on the mechanical property, even causes some decrease in the impact strength. Among these three coupling agents, MAPP is found to be the best coupling agent for increasing the interfacial adhesion between IESF and PP, and the MAPP addition makes the PP composite possess the quickest crystallization rate and greatest tensile strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 513–520, 2003  相似文献   

18.
Polypropylene (PP) hybrid composites have been produced by compounding two types of mineral fillers, viz., talc and kaolin with PP copolymer using a twin screw extruder. The PP hybrid composite was injection‐molded into dumbbell specimen for tensile, flexural, and impact properties characterizations. MFI and SEM studies were used to characterize the flow and morphological properties of the PP hybrid composites. The result shows that most of the hybrid composites showed a significant decrease in flow, tensile, flexural, and impact properties compared with the single filler‐filled PP composites. However, a hybridization effect was seen for the PPT20K10 hybrid composites, through the synergistic coalescence of positive characteristics from 20 wt % of talc and 10 wt % of kaolin. This hybrid formulation have given an economically advantageous material with the mechanical properties (tensile, flexural, and impact) comparable to those of the talc‐filled PP composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 434–441, 2007  相似文献   

19.
Polypropylene/jute fiber (PP‐J) composites with various concentrations of viscose fibers (VF) as impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. The composite materials were manufactured using direct long fiber thermoplastic (D‐LFT) extrusion and compression molding. The effect of fiber length, after the extrusion process, on composites mechanical performance and toughness was investigated. The results showed that the incorporation of soft and tough VF on the PP‐J improved the energy absorption of the composites. The higher impact strength was found with the addition of 10 wt % of the impact modifier, but the increased concentration of the impact modifier affected the tensile and flexural properties negatively. Similarly, HDT values were reduced with addition of viscose fibers whereas the addition of 2 wt % of maleated polypropylene significantly improved the overall composite properties. The microscopic analysis clearly demonstrated longer fiber pullouts on the optimized impact modified composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41301.  相似文献   

20.
In some technical areas, mainly in the automotive industry, glass fiber reinforced polymers are intended to be replaced by natural fiber reinforced polymer systems. Therefore, higher requirements will be imposed to the physical fiber properties, fiber‐matrix adhesion, and the quality assurance. To improve the properties of epoxy resins (EP) and polypropylene (PP) composites, flax and hemp fibers were modified by mercerization and MAH‐PP coupling agent was used for preparing the PP composites. The effects of different mercerization parameters such as concentration of alkali (NaOH), temperature, and duration time along with tensile stress applied to the fibers on the structure and properties of hemp fibers were studied and judged via the cellulose I–II lattice conversion. It was observed that the mechanical properties of the fibers can be controlled in a broad range by using appropriate mercerization parameters. Unidirectional EP composites were manufactured by the filament winding technique; at the PP matrix material, a combination with a film‐stacking technique was used. The influence of mercerization parameters on the properties of EP composites was studied with hemp yarn as an example. Different macromechanical effects are shown at hemp‐ and flax‐PP model composites with mercerized, MAH‐PP‐treated, or MAH‐PP‐treated mercerized yarns. The composites' properties were verified by tensile and flexural tests. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2150–2156, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号