首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用原位聚合的方法制备氧化石墨烯(GO)/聚丙烯酸(PAA)复合物,然后通过湿法纺丝制备GO/PAA复合纤维,最后经氢碘酸还原得到还原氧化石墨烯(RGO)/PAA复合纤维。扫描电子显微镜(SEM)观察发现RGO/PAA复合纤维表面具有RGO的褶皱结构,并且随着PAA含量的增加表面出现聚合物微粒。电导率测试结果表明,当RGO/PAA质量比为10/1时,电阻率最低,导电性能最好,少量的PAA能有效提高复合纤维的导电性。RGO10/PAA1的拉伸强度较高,断裂伸长率较小,其拉伸电阻最为稳定。导电纤维用于导电通路线具有良好的导电性能,这为其作为柔性导体的应用提供了依据。  相似文献   

2.
为探究氧化石墨烯(GO)溶液对单壁碳纳米管(SWCNTs)的分散效果,采用Hummers法并通过控制氧化和超声过程获得不同尺寸的GO溶液对SWCNTs进行分散,制备均匀分散的碳纳米管分散液(GO/SWCNTs),以喷涂法制备碳纳米管透明导电薄膜(GO/SWCNT-TCFs),并通过SEM、TEM、紫外可见光光谱和四探针测试等方法表征不同尺寸的GO对SWCNTs的分散效果和不同分散液喷涂得到的薄膜导电性能.结果表明,尺寸最小的S-GO对SWCNTs的分散效果最好,S-GO/SWCNTs分散液的紫外可见光吸光度最高,S-GO/SWCNTs-TCFs的导电性能最佳,在透光率为85%时,薄膜面电阻为1.8 kΩ/sq.  相似文献   

3.
室温下,将盐溴化锂(Li Br)溶解在甲酸中制备离子溶液,将丝素蛋白纤维溶解后,加入导电共轭聚合物聚苯胺,利用湿法纺丝技术制备丝素蛋白纤维(SF)/聚苯胺(PANI)导电柔性长丝。在这项研究中,以25%酒精作为为凝固浴制备长丝,我们测试并分析SF/PANI长丝的可纺性、表面形貌、结构、机械性能、导电性能。SF浓度在14. 0wt%~20. 0wt%时,SF/PANI长丝具备可纺性。SF/PANI长丝的结构包括丝I和丝II的共存,并且不受PANI添加的影响。与SF长丝相比,SF/PANI长丝应力经过两倍牵伸后可达21. 84±3. 54 MPa,应变有所下降。导电共轭聚合物PANI,在SF纤维表面附着,从而使SF/PANI长丝具备导电性。  相似文献   

4.
由静电纺丝技术纺制的纤维支架材料能够提供大的比表面积及较高的孔隙率。以甲酸为溶剂,丝素蛋白(Silk fibroin,SF)和海藻酸钠(Sodium alginate,SA)为基体材料,并加入中空生物活性玻璃(Hollow bioactive glass,HBG),复合成体外生物活性较好的生物支架材料;通过体外生物矿化可以加速羟基磷灰石(Hydroxyapatite,HAp)的沉积及生长。经过一系列测试分析,结果显示:通过静电纺丝制备出SF/SA/HBG纤维复合膜,其平均直径分布在200~300 nm;经过乙醇处理后,纤维表面发生溶胀,直径变粗,平均直径分布在230~380 nm;进行体外生物矿化后,在纤维表面形成HAp,SF/SA/HBG纤维复合支架材料具有良好的生物活性。  相似文献   

5.
以部分水解聚丙烯酰胺( HP AM) 为基体, 将氧化石墨烯( GO) 分散在基体中, 采用物理共混法制备 GO /HP AM 复合体系。结果表明, 当GO的加入质量分数为5%时, GO /HP AM 复合体系的黏度最大, GO的加入 使得复合体系的黏度提高了将近6 3. 8 2%; GO在 HP AM 溶液中能够均匀的分散, 并且GO /HP AM 复合体系的稳定 性较好, 稳定性参数T S I值在2. 1附近不再变化; GO /HP AM 复合体系与单一的 HP AM 溶液均为假塑性流体, GO / HP AM 复合体系更接近牛顿流体, 黏度更大, 并且 GO /HP AM 复合体系的抗剪切性能要比单一的 HP AM 溶液要 好; 在不同的温度下, GO /HP AM 复合体系的黏度均高于 HP AM 溶液。  相似文献   

6.
通过对高纯鳞片石墨(GE)进行化学处理,制备氧化石墨烯(GO)和还原石墨烯(rGO);以针叶木纤维素为基体,GO、rGO为掺杂剂,制备了纤维素/氧化石墨烯复合气凝胶(C/GO)与纤维素/还原石墨烯复合气凝胶(C/rGO)。采用红外光谱、X射线衍射、扫描电镜、热重分析、杨氏弹性模量对制得气凝胶的结构、形貌、热稳定性和强度性能进行了系统表征。结果表明,GO和rGO依靠氢键结合和纤维素的分散作用在纤维素基体中均匀分散,形成稳定的多孔复合结构;通过杨氏弹性模量确定较适GO、rGO掺杂比均为纤维素的1%,此时C/rGO的杨氏弹性模量为53.26 MPa,是C/GO的1.6倍、纯纤维素气凝胶(CA)的5.4倍。GO、rGO的掺杂在一定程度上提高了纤维素气凝胶的热稳定性。  相似文献   

7.
采用石墨烯(GO)含量分别为0%、1%、3%、5%、7%的GO/纤维素溶液纺制GO/纤维素复合纳米膜,探讨电纺GO/纤维素复合纳米膜的制备工艺及性能。对GO/纤维素纳米膜进行XRD、抗紫外、发热、电学等结构表征和性能测试,测试结果表明:GO的加入可明显改善纤维的导热性能和抗紫外性能,并且随着GO含量的增加,电纺GO/纤维素纳米复合膜的导热性能和抗紫外性能不断增加;但是也会给膜带来一些缺陷,如抗静电性能下降以及膜的强力降低。总体来说,GO/纤维素复合材料提高了普通纤维素膜的价值,使其具有了更广阔的应用前景。  相似文献   

8.
以Ni(NO3)2·6H2O、Al(NO3)3·9H2O、尿素以及氧化石墨烯(GO)为原料,利用简便的均相沉淀法合成了GO复合量(质量分数)分别为0、0.2%、0.5%、0.8%和1.0%的Ni/Al⁃LDHs/rGO复合电极材料。采用XRD、FT⁃IR、TGA和FESEM表征了材料的结构和表面形貌,利用循环伏安(CV)、交流阻抗(EIS)和充放电测试研究了Ni/Al⁃LDHs/rGO复合材料作为Ni⁃MH电池正极材料的电化学性能。结果表明,复合GO可以明显提高Ni/Al⁃LDHs的电化学性能,其中GO复合量为0.8%的Ni/Al⁃LDHs/rGO样品表现出最为优异的综合电化学性能,例如在2 000 mA/g电流密度下,其放电比容量(288 mA·h/g)比未复合GO的Ni/Al⁃LDH样品放电比容量(205 mA·h/g)高出40.5%。  相似文献   

9.
利用静电纺丝技术制备聚氨酯纳米纤维,采用原位聚合法在纤维表面聚合导电聚合物聚苯胺,得到具有优良导电性能的PU/PANI复合纳米导电纤维。利用扫描电镜(SEM)和红外光谱(FTIR)表征了PU/PANI复合纳米纤维的微观结构和化学组成,结果证明在聚氨酯纳米纤维表面成功合成了聚苯胺,并观察到聚苯胺均匀地包覆在聚氨酯纳米纤维的表面,PU/PANI复合纳米纤维呈现明显的皮芯结构。通过导电性能测试发现,PU/PANI复合纳米纤维电导率可达到4.34×10-1S/cm,导电性能优良。制得的复合纳米纤维网络的电导率相比普通纤维复合材料大幅提高,有望应用于微电子、传感器和抗静电领域。  相似文献   

10.
以聚氨酯为弹性结构相,纳米炭黑为导电功能相,基于非溶剂致相分离原理,通过湿法纺丝工艺制备纳米炭黑/聚氨酯弹性导电纤维,并研究不同炭黑含量(10%~50%)复合纤维的力学性能及导电性能。结果表明:复合纤维的导电性随着炭黑含量的增加而得到显著提高。炭黑的质量分数为40%时,复合纤维的电导率为7.6S/m,具有良好的导电性能,其力学性能变差,但不影响使用。在智能纺织品、传感器等方面有很好的应用前景。  相似文献   

11.
选用零维的银纳米粒子(AgNPs)与二维的氧化石墨烯(GO),利用溶胶-凝胶(Sol-Gel)技术,通过冷冻干燥得到孔径均匀的还原氧化石墨烯/银纳米粒子(rGO/AgNPs)三维导电气凝胶。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等来研究样品的组成、结构与形貌,并对rGO/AgNPs三维导电气凝胶的导电性能做了初步探索。结果表明:在溶胶-凝胶转换过程中,预还原适宜的温度和时间能够有效使得气凝胶保持较小的体积收缩率;AgNPs能够均匀分布在rGO所构成的三维骨架。并且rGO/AgNPs三维导电气凝胶具有优异的导电性能,电导率达到0.17S·cm~(-1)。  相似文献   

12.
以氧化石墨烯(GO)为载体材料和导热增强相,聚乙二醇(PEG)为相变材料,制备得到了聚乙二醇/氧化石墨烯(PEG/GO)复合相变储能材料。对产物进行FTIR、SEM、DSC等测试表征,并分析了GO的添加量对制备得到的PEG/GO复合相变储能材料的相变稳定性和导热性的影响。实验结果表明,GO的高比表面积和二维片层结构有利于提高其对PEG的吸附效果,当GO含量为15%时,PEG/GO复合相变材料在高于PEG熔融温度时具有良好的形状稳定性,其热导率与纯PEG相比提高了近6倍,同时复合材料仍具有较高的相变焓。  相似文献   

13.
以聚苯胺/涤纶(PANI/PET)复合导电织物为研究对象,选择分散红SF-B、分散黄UN-SE及分散蓝SF-G对其进行染色,研究染料用量、染色温度、保温时间、pH值及浴比各因素对PANI/PET复合导电织物的抗静电性能及上染性能的影响;并通过正交试验和极差分析确定其分散染料染色最佳工艺为:pH值4.5、染色温度110℃、保温时间20 min和浴比1∶50。实验结果表明:PANI/PET复合导电织物经该最佳工艺染色后,其半衰期、耐久性及色牢度均满足实际生产需要。  相似文献   

14.
具有多孔结构的传感材料因可赋予器件轻质、高柔性以及穿着舒适性等优点,已成为近年来的研究热点。以聚氨酯(PU)乳胶粒作为皮克林(Pickering)粒子,引入氧化石墨烯(GO)作为导电填料,制备"水包油(O/W)"型的高内相乳液(HIPE)液态模板;将乳液模板经冷冻干燥成型后,以抗坏血酸(VC)还原成型材料中的GO,得到具有压阻响应性的柔性导电聚合物泡沫(rGO@PU)。分别考察了PU粒子浓度以及GO浓度对rGO@PU形貌、力学性能以及压阻性能的影响。结果表明:PU可用作Pickering粒子,稳定"环己烷/水"HIPE,同时PU低的玻璃化转变温度赋予材料柔性;随着PU粒子浓度的降低,材料孔径增大,模量降低;提高GO浓度,材料孔径变化不大,但模量增高;材料的灵敏度、应力量程则可通过改变PU和GO的浓度进行调控。  相似文献   

15.
以乙烯醋酸乙烯酯共聚物(EVA)泡沫为基材,使用碱溶液对EVA泡沫表面进行刻蚀处理,得到了碱处理的EVA泡沫(SH-EVA),然后以HCl为掺杂剂,引发苯胺单体在SHEVA表面聚合,制备出了PANI/SH-EVA复合导电泡沫,并研究了苯胺单体使用量对复合泡沫导电性能的影响.实验研究表明:PANI/SH-EVA复合导电泡沫表面电阻最佳可达4 747.9Ω并趋于稳定;扫描电子显微镜(SEM)和傅立叶变换红外分光光度计(FT-IR)的分析结果表明:在未改变EVA化学结构的同时,SH-EVA泡沫表面具有更多的活性点,有利于PANI的包覆,同时可获得有利于导电性能且稳定致密的草莓状形貌.  相似文献   

16.
采用透射电镜、X射线衍射和傅里叶红外光谱等技术对Fe3O4/GO,Fe3O4/MWCNTs和Fe3O4纳米组分进行了表征.基于Fe3O4/GO复合纳米组分优异的催化性能,研究了催化剂投加量、过硫酸钠浓度和pH值等对其催化性能的影响.结果表明:3种纳米组分的催化性能大小依次为:Fe3O4/GOFe3O4/MWCNTsFe3O4,其中,Fe3O4/GO复合纳米组分催化过硫酸钠降解卡马西平的性能最优.Fe3O4/GO复合纳米组分的最佳投加量和过硫酸钠的最佳浓度分别为0.4g/L和1.5mmol/L.Fe3O4/GO复合纳米组分在酸性条件下表现出最佳的催化性能,随着pH值升高,催化性能降低.Fe3O4/GO复合纳米组分对3种常用氧化剂均有较好的催化效果,且催化性能大小依次为:过硫酸氢钾H2O2过硫酸钠.  相似文献   

17.
为研究石墨烯在超级电容器中的导电效果,将石墨烯量子点(GQDs)代替商品化导电炭黑(CB)用作新型纳米尺寸(~10 nm)的导电剂,分别采用直接液相复合和热还原复合方式制备具有良好导电网络的AC-G和AC-HG系列电极,并考察两种复合方式对活性炭电极结构特性与双电层电容性能的影响.结果表明:添加1%GQDs的AC电极呈现出优异的比电容和倍率性能,当电流密度从0.1 A/g增加到10 A/g,其比电容由110 F/g降到85 F/g,明显优于添加10%CB的AC电极(100 F/g降为65 F/g);热处理过程大幅去除了GQDs所带含氧官能团,AC-HG电极的电子电导率提高而离子电导率降低,因此其倍率性能略有下降,但循环稳定性大幅提高.  相似文献   

18.
提出了一种制备HA/SF复合粉末的新方法.以磷酸氢二钠、无水氯化钙和丝素蛋白为原料制备羟基磷灰石/丝素蛋白(HA/SF)复合粉末,通过X-射线衍射(XRD)、扫描电子显微镜(SEM)和红外吸收光谱(FIR)等检测手段,探讨了反应酸度、反应温度、反应时间,丝素蛋白加入量和原料加入顺序对制备HA/SF复合粉末的影响,确定了最佳的制备条件;该方法可降低溶解丝素蛋白的温度,达到节约能源的目的.  相似文献   

19.
采用现场吸附聚合法制备聚苯胺/锦纶导电织物.研究外部环境条件与复合导电织物导电性能的变化关系和复合导电织物在温度、湿度、酸碱度及洗涤次数等不同环境条件下的导电性能.结果表明,随着湿度的降低,温度的上升,复合导电织物电导率下降;复合导电织物在pH〉5值溶液处理与洗涤后,织物的点对点电阻上升,导电性能下降.  相似文献   

20.
以不同组成比的PVDF/PEG复合制成微多孔状材料,然后利用该材料与锂盐制备复合电解质薄膜,并对所得薄膜样品进行偏光显微镜(POM)、X射线衍射(XRD)及扫描电子显微镜(SEM)分析和表征.通过对比微多孔状材料表面的PVDF/PEG复合电解质膜与未加致孔剂的PVDF/PEG薄膜的导电性能,研究表面微观结构对离子导电行为的影响.结果表明,PVDF/PEG复合电解质薄膜对乙酸蒸气具有择优性响应性,在复合薄膜中引入微多孔结构,增大了比表面积,响应性能明显改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号