首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
The low cost and high quality of multicrystalline silicon (mc‐Si) based on directional solidification has become the main stream in photovoltaic (PV) industry. The mc‐Si quality affects directly the conversion efficiency of solar cells, and thus, it is crucial to the cost of PV electricity. With the breakthrough of crystal growth technology, the so‐called high‐performance mc‐Si has increased about 1% in solar cell efficiency from 16.6% in 2011 to 17.6% in 2012 based on the whole ingot performance. In this paper, we report our development of this high‐performance mc‐Si. The key ideas behind this technology for defect control are discussed. With the high‐performance mc‐Si, we have achieved an average efficiency of near 17.8% and an open‐circuit voltage (Voc) of 633 mV in production. The distribution of cell efficiency was rather narrow, and low‐efficiency cells (<17%) were also very few. The power of the 60‐cell module using the high‐efficiency cells could reach 261 W as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The electrical properties and the minority charge carrier recombination behaviour of grain boundaries (GBs) and intragrain dislocations in different n‐type multicrystalline silicon (mc‐Si) ingots were systematically studied through microwave‐detected PhotoConductance Decay (µW‐PCD), Electron Beam Induced Current (EBIC) and PhotoLuminescence (PL) spectroscopy on as‐grown samples and on samples submitted to P‐diffusion step. It was confirmed that the overall quality of n‐type mc‐Si is high, indicating that n‐type‐Si is a valid source for photovoltaic applications. As expected, the average lifetime increases after the P‐diffusion process, which induces impurity gettering effects at the external surfaces, like in the case of p‐type samples, but an evident local increase of electrical activity of some GBs after that process was also observed using the EBIC mapping technique. Apparently, a redistribution of impurities occurs at the processing temperature and impurities are captured at the deepest sinks. In fact, while all GBs act as heterogeneous segregation/precipitation sites, some of them will compete with the external surfaces sinks, partly vanishing the effect of P‐gettering. Last but not least, it was experimentally demonstrated that the average lifetime values measured with the µW‐PCD technique well correlate with the recombination activity of GBs measured with the EBIC technique, showing the extreme importance of GBs on the effective lifetime of this material. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A method for removal of metallic contaminants from commercial Si3N4‐powders has been developed. The method is based on acid leaching and shows promising results. Analyses show that the content of both intermetallic compunds as Fe, Ti and Al as well as O are significantly reduced. Clean, synthetic fused silica crucibles have been used along with normal sintered ones based on natural quartz. The crucibles were coated with normal, commercial silicon nitride powder and with purified Si3N4 in a cleanest possible environment. The crucibles were then used as vessels for directional solidification of multicrystalline silicon in a pilot scale furnace. The average lifetime of minority charge carriers in the cast silicon was determined by quasi steady state photoconductance (QSSPC) from the bottom to the top of the ingots. These varied in a systematic way, so that the materials cast in the pure environment had significantly higher values than the materials cast with conventional coating‐ and crucible materials. The maximum values for the lifetimes in the individual ingots varied from 7 to 135 µs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Finite element (FE) and cellular automaton (CA) models are used in order to predict the microstructure of Poly-Crystalline Silicon (PC-Si) ingots during casting in a directional solidification furnace. During solidification, the 3D-FE model is used to simulate thermal field inside the furnace, while the nucleation and growth of PC-Si are simulated by the modified version of CA model. In this model both nucleation at silicon-crucible interface and nucleation of equiaxed grains on impurities are modeled. The origin of impurity is considered SiC particles when carbon segregates during the solidification and precipitates as SiC particles if carbon solubility limit is reached. The model is evaluated with experimental data for different parameters, such as: the temperature profile at the top and bottom of the PC-Si, grain size, and the height of solidified silicon during solidification. A one-dimensional form of grain growth is observed at the crucible-silicon interface, while a more two-dimensional form of growth is predicted at higher silicon height. The microstructure of PC-Si shows that the grain size increases as a function of PC-Si ingot height. The effects of the cooling rate and competitive growth on the final microstructure of PC-Si are also investigated. The results show that less nucleation sites are formed at the bottom of the crucible with a slower cooling rate, which leads to a larger grain size. Furthermore, the grains at the crucible side walls tend grow inward at a lower cooling rate, which can significantly change the microstructure of PC-Si. This study shows that the competitive growth phenomena plays an important role in the final microstructure of silicon ingots. A simulated model is proposed which shows that by changing the density and location of nucleation sites it is possible to achieve more effective control on final PC-Si micro structure. This simulation helps to explain the crystal behavior observed in ingots cast under different conditions.  相似文献   

5.
In this study, we have investigated the Hall majority carrier mobility of p‐type, compensated multicrystalline solar grade silicon (SoG‐Si) wafers for solar cells in the temperature range 70–373 K. At low temperature (~70 K) the difference in the mobilities measured for the compensated and the uncompensated reference samples is the highest, and the measured mobility shows dependence on the compensation ratio. Mobilities decrease with increasing temperature, and towards room temperature, the mobilities of the different samples are in the same range. The measurements show that, for these samples, the contribution from lattice scattering is dominating over ionized impurity scattering at room temperature. In the range of interest for silicon solar cells (above room temperature), the trend in carrier mobility is similar for all the samples, and the measured value for the sample with low compensation ratio and low doping density is comparable to the uncompensated references. A comparison of resistivity and majority carrier density measured by the Hall setup at room temperature and by four‐point probe and glow discharge mass spectroscopy, respectively, is reported as well. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Silicon nitride (a‐SiNx:H) films deposited by the expanding thermal plasma at high rate (> 1 nm/s) have been studied for application as anti‐reflection coatings for multicrystalline silicon (mc‐Si) solar cells. Internal quantum efficiency measurements have revealed that bulk passivation is achieved after a firing‐through process of the a‐SiNx:H as deposited from NH3/SiH4 and N2/SiH4 plasmas. However, the a‐SiNx:H films deposited from N2/SiH4 show a lower passivation quality than those deposited from NH3/SiH4. This has been attributed to a poorer thermal stability of the films deposited from the N2/SiH4 plasma, resulting in structural changes within the film during the firing step. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Lifetime stability of gallium‐doped multicrystalline silicon wafers has been evaluated under illumination. Quality and stability of the Ga‐doped multicrystalline silicon wafers were intensively studied by means of quasi‐steady‐state photocondcutance lifetime measurement. Results show that as‐grown Ga‐doped multicrystalline silicon wafers have high lifetimes, and no significant degradation was observed under illumination. The Ga‐doped multicrystalline silicon wafers are a promising material for future photovoltaics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The defect‐induced diode breakdown behavior in multicrystalline silicon solar cells, which is located at recombination active crystal defects, is influenced by the surface texturization because the wet chemical treatment selectively etches grain boundaries and dislocations, resulting in etch pits. On textured surfaces, the defect‐induced breakdown voltage is decreased, and the slope of the local reverse I–V characteristics in breakdown is steeper. We find that the local defect‐induced breakdown voltage correlates with the depth of the etch pits. It is suggested that the enhanced electric field in the space charge region at the tip could be superimposed by an electric field around metallic precipitates because of the internal Schottky contact formation with the surrounding silicon. The combined electric field could be responsible for the dependence of the defect‐induced breakdown behavior on the surface texture. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A process using laser‐ablated pits to texture the front surface of monocrystalline and multicrystalline silicon solar cells is described. Optical and electrical characterization demonstrates that the technique performs as well as upright random pyramid texturing and causes no laser‐induced defects or laser shunting. Double‐sided buried contact solar cells fabricated with laser texture performed as well as those fabricated with upright random pyramid textures on 1 Ω cm, p type float‐zoned wafers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
We have investigated the influence of diffusion temperature during phosphorus emitter diffusion from a spray‐on source on the performance of screen‐printed multicrystalline silicon solar cells. Because of the dual diffusion mechanism present at high concentration in‐diffusion of phosphorus in silicon, applying lower diffusion temperatures for a longer duration results in significantly enhanced penetration of the low concentration tail relative to the high concentration region. Moreover, we show that the sheet resistance of in‐diffused emitters from a high concentration source depends primarily on the extension of the high concentration region, thus significantly different emitter profiles can be manufactured without altering the sheet resistance considerably. Because of the enhanced tail penetration, emitters of a specified sheet resistance diffused at reduced temperatures can result in higher fill factors of screen‐printed solar cells due to diminution of Schottky type shunts. Furthermore, emitters diffused at lower temperatures for longer durations can yield a higher gettering efficiency, resulting in increased bulk recombination lifetime, and thus a higher internal quantum efficiency at long wavelengths. The deeper tail extension of low temperature emitters, however, causes increased absorption within the highly recombinative emitter, resulting in current losses due to a lower internal quantum efficiency at short wavelengths. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Nanostructured crystalline silicon is promising for thin‐silicon photovoltaic devices because of reduced material usage and wafer quality constraint. This paper presents the optical and photovoltaic characteristics of silicon nanohole (SiNH) arrays fabricated using polystyrene nanosphere lithography and reactive‐ion etching (RIE) techniques for large‐area processes. A post‐RIE damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. We show that the damage removal etching treatment can effectively recover the carrier lifetime and dark current–voltage characteristics of SiNH solar cells to resemble the planar counterpart without RIE damages. Furthermore, the reflectance spectra exhibit broadband and omnidirectional anti‐reflective properties, where an AM1.5 G spectrum‐weighted reflectance achieves 4.7% for SiNH arrays. Finally, a three‐dimensional optical modeling has also been established to investigate the dimension and wafer thickness dependence of light absorption. We conclude that the SiNH arrays reveal great potential for efficient light harvesting in thin‐silicon photovoltaics with a 95% material reduction compared to a typical cell thickness of 200 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Silicon nitride coating deposited by the plasma‐enhanced chemical vapor deposition method is the most widely used antireflection coating for crystalline silicon solar cells. In this work, we employed double‐layered silicon nitride coating consisting of a top layer with a lower refractive index and a bottom layer (contacting the silicon wafer) with a higher refractive index for multicrystalline silicon solar cells. An optimization procedure was presented for maximizing the photovoltaic performance of the encapsulated solar cells or modules. The dependence of their photovoltaic properties on the thickness of silicon nitride coatings was carefully analyzed. Desirable thicknesses of the individual silicon nitride layers for the double‐layered coatings were calculated. In order to get statistical conclusions, we fabricated a large number of multicrystalline silicon solar cells using the standard production line for both the double‐layered and single‐layered antireflection coating types. On the cell level, the double‐layered silicon nitride antireflection coating resulted in an increase of 0.21%, absolute for the average conversion efficiency, and 1.8 mV and 0.11 mA/cm2 for the average open‐circuit voltage and short‐circuit current density, respectively. On the module level, the cell to module power transfer factor was analyzed, and it was demonstrated that the double‐layered silicon nitride antireflection coating provided a consistent enhancement in the photovoltaic performance for multicrystalline silicon solar cell modules than the single‐layered silicon nitride coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer‐growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect‐management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast‐diffusing species during cell processing, is critical to enable high cell efficiencies. To accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection‐dependent lifetime measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This work uses a variety of tools to investigate damage caused by laser and dicing saw grooving in silicon. The tools comprise quasi steady state photoconductance decay, photoluminescence imaging, measurement of silicon etch rate in anisotropic etch solution, and visual microscopy. Shallow grooves were formed using a 532 nm Q‐switched Nd:YLF frequency doubled solid state laser and a high speed spindle dicing saw. Combined analysis of the characterization tools enabled determination of the damage radius of the grooves within the bulk of the wafer, the radius of damage in the dielectric layer laterally along the surface of the wafer, as well as the groove etching requirements to fully recover the minority carrier lifetime in the vicinity of the groove. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The flattened light‐scattering substrate (FLiSS) is formed by a combination of two materials with a high refractive index mismatch, and it has a flat surface. A specific realization of this concept is a flattened two‐dimensional grating. When applied as a substrate for thin‐film silicon solar cells in the nip configuration, it is capable to reflect light with a high fraction of diffused component. Furthermore, the FLiSS is an ideal substrate for growing high‐quality microcrystalline silicon (µc‐Si:H), used as bottom cell absorber layer in most of multijunction solar cell architectures. FLiSS is a three‐dimensional structure; therefore, a full‐wave analysis of the electromagnetic field is necessary for its optimal implementation. Using finite element method, different shapes, materials, and geometrical parameters were investigated to obtain an optimized FLiSS. The application of the optimized FLiSS in µc‐Si:H single junction nip cell (1‐µm‐thick i‐layer) resulted in a 27.4‐mA/cm2 implied photocurrent density. The absorptance of µc‐Si:H absorber exceeded the theoretical Yablonovitch limit for wavelengths larger than 750 nm. Double and triple junction nip solar cells on optimal FLiSS and with thin absorber layers were simulated. Results were in line with state‐of‐the‐art optical performance typical of solar cells with rough interfaces. After the optical optimization, a study of electrical performance was carried out by simulating current–voltage characteristics of nip solar cells on optimized FLiSS. Potential conversion efficiencies of 11.6%, 14.2%, and 16.0% for single, double, and triple junction solar cells with flat interfaces, respectively, were achieved. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号