首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of N‐methyl‐2‐(3‐nitrophenyl)pyrrolidino[3′,4′:1,2]fullerene (mNPF) on the decomposition characteristics of hexogen (RDX) was investigated using differential scanning calorimetry (DSC). The results show that mNPF can accelerate the decomposition of RDX, the peak temperature (Tp) of the exothermal decomposition is reduced by 6.4 K, and the corresponding apparent activation energy (Ea) is decreased by 8.7 kJ mol−1. N‐methyl‐2‐(3‐nitrophenyl)pyrrolidino[3′,4′:1,2]fullerene (mNPF), carbon black (CB), and C60 were used as combustion catalysts to improve the combustion performance of a composite modified double‐base propellant containing RDX (RDX‐CMDB). The burning rate experimental results show that mNPF has a stronger catalytic effect than C60 and CB. The magnitude of the effect of the three carbon substances on the enhancement of the burning rate is as follows: mNPF>C60>CB. The catalytic effects of different contents of mNPF on the burning rates of RDX‐CMDB propellants were also studied, and the results show that the burning rates of RDX‐CMDB propellants are improved with increasing mNPF content. The plateau burning rate of a RDX‐CMDB propellant can be increased to 19.6 mm s−1 when 1.0 % mNPF is added, and the corresponding plateau combustion region occurs at 8–22 MPa.  相似文献   

2.
Symmetrical internal alkynes can be prepared either by diarylation of mono‐ and bis(trimethylsilyl)acetylene (TMSA and BTMSA) catalyzed by ligand‐less palladium(II) chloride or by a di(2‐pyridyl)methylamine‐derived palladium(II ) chloride complex 1 (typical 0.1–1 mol % of Pd loading) in water using pyrrolidine as base and tetra‐n‐butylammonium bromide as additive. Alternatively, this same process is performed in NMP in the presence of tetra‐n‐butylammonium acetate (TBAA) as base with even lower Pd loadings (0.001–1 mol % Pd). The same reaction conditions are applied to the synthesis of unsymmetrical internal alkynes by monoarylation of silylated terminal alkynes. Aryl iodides can be coupled with TMSA, BTMSA and silylated terminal alkynes under heating or at room temperature, whereas for aryl bromides couplings are performed under water reflux or at 110 °C in the case of NMP. Complex 1 can be reused during several cycles either in water or in NMP without loss of catalytic activity. These simple reaction conditions allow the preparation of internal alkynes without secondary products, most probably by succesive protiodesilylation‐Sonogashira coupling.  相似文献   

3.
The RDX burning rates and temperature profiles in the combustion wave are measured with the pressure and initial temperature varied within wide limits. Parameters of combustion waves are found. The gas phase of RDX is demonstrated to have a single-zone structure. Two regimes of RDX combustion are found: a basic regime at p > 0.1 MPa and a special regime at p ≤ 0.1 MPa. The main characteristics of these regimes are obtained, and the wave regions responsible for the burning rate are determined. Both regimes are characterized by wide reaction zones in the gas phase. The processes of vaporization and decomposition of the condensed phase proceed simultaneously on the burning surface. The fraction of thermal expansion in the reaction layer of this phase is estimated. Laws of RDX gasiffication (pyrolysis) in the combustion wave are found, which turn out to be the same as those for HMX. Distributions of the heat-release rate in the combustion wave (in the reaction layer of the condensed phase and in the gas phase) are obtained. Sensitivity of the burning rate to the initial temperature is measured. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 5, pp. 32–45, September–October, 2006.  相似文献   

4.
BACKGROUND: Ethylene oligomerization is the major industrial process to produce linear α‐olefins. Recently much work has been devoted to late transition metal catalysts used in this process, especially those with 2,6‐bis(imino)pyridyl dihalide ligands. Considering that most work has focused on simple modification to the substituents in imino‐aryl rings based on the symmetric bis(imino)pyridyl framework, here we expand this work to the asymmetric mono(imino)pyridyl ligands. RESULTS: The preparation, structure and ethylene polymerization/oligomerization behavior of series of mono(imino) pyridyl–MCl2 and bis(imino)pyridyl–MXn complexes are presented. The systematic studies were focused on the relationship between the catalytic behavior of these complexes for ethylene polymerization/oligomerization and reaction conditions, ligand structures, metal centers and counter‐anions. The influence of the coordination environment on catalyst behavior is also discussed. CONCLUSION: For mono(imino)pyridyl–Co(II) and ? Ni(II) catalysts bearing the Cl? counter‐anion, good activities ranging from 0.513 × 105 to 1.58 × 105 g polyethylene (mol metal)?1 h?1 atm?1 are afforded, and the most active catalysts are those with methyl in both ortho‐ and para‐positions of the imine N‐aryl ring. For bis(imino)pyridyl–Co(II) and ? Ni(II) catalysts bearing the SO42? and NO3? counter‐anions, the low activities for ethylene oligomerization are in sharp contrast to those of their chloride analogues. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
Two organosilicone resins (PCSN and PCSNN) were prepared from 1,3‐bis‐glycidyl‐ptert‐butyl‐calix[4]arene(BGC) via condensation with triethoxyaminopropylsilane or triethoxy‐4‐azo‐6‐aminohexylsilane, followed by copolymerization with tetraethoxysilane, respectively. The resins exhibit high thermostability and adsorb nitrogen under elevation temperature. The adsorption capacity of PCSN and PCSNN toward Mg(II), Cu(II), Pb(II), Hg(II), and Au(III) cations was determined and the thermodynamic parameter of the resins toward Au(III) ion was deduced. Human serum protein was also adsorbed on the resins. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 58–64, 2001  相似文献   

6.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

7.
Calixarene‐modified chitosans (CTS–CA‐I and CTS–CA‐II) were first synthesized by the reaction of chitosan (CTS‐NH2) with 1,3‐bis‐chloroethoxyethoxy‐2,4‐dihydroxy‐ptert‐butylcalix[4]arene (CA‐I) or its benzoyl derivative (CA‐II). Their structures were characterized by infrared and X‐ray diffraction spectroscopy and scanning electron microscopy (SEM). The adsorption of Ni2+, Cd2+, Cu2+, Pd2+, Ag+, and Hg2+ by CTS–CA‐I and CTS–CA‐II was studied and the thermodynamic parameter of two calixarene‐modified chitosans toward Hg2+ was deduced. The adsorption properties of CTS–CA‐I and CTS–CA‐II were greatly varied compared with that CTS‐NH2, especially with the adsorption capacity toward Ag+ and Hg2+, because of the presence of the calixarene moiety. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1139–1144, 2003  相似文献   

8.
The thermal decomposition of poly(3‐difluoroaminomethyl‐3‐methyloxetane) (PDFAMO) with an average molecular weight of about 6000 was investigated using thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The kinetics of thermolysis were studied by a model‐free method. The thermal decomposition of PDFAMO occurred in a two‐stage process. The first stage was mainly due to elimination of HF and had an activation energy of 110–120 kJ mol−1. The second stage was due to degradation of the polymer chain. The Fourier transform infrared (FTIR) spectra of the degradation residues showed that the difluoroamino groups decomposed in a two‐step HF loss at different temperatures. The remaining monofluoroimino groups produced by the incomplete elimination of HF were responsible for the two‐stage thermolysis process. The compatibility of PDFAMO with some energetic components and inert materials used in polymer‐bonded explosives (PBXs) and solid propellants was studied by DSC. It was concluded that the binary systems of PDFAMO with cyclotrimethylenetrinitramine (RDX), 2,4,6‐trinitrotoluene (TNT), 2,4‐dinitroanisole (DNAN), pentaerythritol tetranitrate (PETN), ammonium perchlorate (AP), aluminum powder (Al), aluminum oxide (Al2O3) and 1,3‐diethyl‐1,3‐diphenyl urea (C1) were compatible, whereas the systems of PDFAMO with lead carbonate (PbCO3) and 2‐nitrodiphenylamine (NDPA) were slightly sensitized. The systems with cyclotetramethylenetetranitroamine (HMX), hexanitrohexaazaisowurtzitane (CL‐20), 3‐nitro‐1,2,4‐triazol‐5‐one (NTO), ammonium nitrate (AN), magnesium powder (Mg), boron powder (B), carbon black (C. B.), diphenylamine (DPA), and p‐nitro‐N‐methylamine (PNMA) were incompatible. The results of compatibility studies fully supported the suggested thermal decomposition mechanism of PDFAMO.  相似文献   

9.
A new catalyst separation and recycling protocol combining magnetic nanoparticles and host‐guest assembly was developed. The catalyst, (η6‐arene)[N‐(para‐toluenesulfonyl)‐1,2‐diphenylethylenediamine]ruthenium trifluoromethanesulfonate [Ru(OTf)(TsDPEN)(η6‐arene)] bearing a dialkylammonium salt tag, was easily separated from the reaction mixtures by magnet‐assisted decantation, on basis of the formation of a pseudorotaxane complex by using dibenzo[24]crown‐8‐modified Fe3O4 nanoparticles. The ruthenium catalyst has been successfully reused at least 5 times with the retention of enantioselectivity but at the expense of relatively low catalytic activities in the asymmetric hydrogenation of 2‐methylquinoline.  相似文献   

10.
New 3rd generation designer ansa‐ruthenium(II) complexes featuring N,C‐alkylene‐tethered N,N‐dialkylsulfamoyl‐DPEN/η6‐arene ligands, exhibited good catalytic performance in the asymmetric transfer hydrogenation (ATH) of various classes of (het)aryl ketones in formic acid/triethylamine mixture. In particular, benzo‐fused cyclic ketones furnished 98 to >99.9% ee using a low catalyst loading.

  相似文献   


11.
For the preparation of a heterogenized N,N′‐bis(acetylacetone)ethylenediamine cobalt(II) Schiff base complex, first crosslinked polymer beads were prepared by the suspension copolymerization of styrene (48.97 mmol, 5.1 g), allyl chloride (48.97 mmol, 3.746 g), and divinyl benzene (DVB; 1.75 mmol, 0.228 g) in the presence of azobisisobutyronitrile (0.9 × 10?3 mmol, 0.15 g) as an initiator at 23 ± 0.1°C under an inert atmosphere. The copolymerization of styrene, allyl chloride in the presence of gelatin (0.75 g), bentonite (2.0 g), and boric acid (2.5 g) produced beads of different crosslinked densities corresponding to the concentration of DVB in the reaction mixture. The amount of allyl chloride in the prepared beads varied from 5.40 to 7.40 mmol g?1 of beads with the amount of DVB varying from 2.0 to 0.8 mmol in the reaction mixture. A quadridentate Schiff base (acen) was prepared with ethylenediamine (5.0 mmol, 0.3 g) and acetylacetone (10.0 mmol, 1.0 g), and it was used to obtain a homogenized and heterogenized Co(II)(acen)2 complex. The extent and arrangement of the Schiff base (acen) in the crosslinked beads depended on the availability of DVB in the reaction mixture. The amount of DVB in the reaction mixture influenced the extent of cobalt(II) ion loading, the degree of swelling, the porosity, and the pore size in the prepared beads. The beads (type IV) prepared with 1.75 mmol (0.228 g) of DVB in the reaction mixture showed a degree of swelling of 9.65% and efficiencies of loading and complexation for cobalt(II) ions of 49.4 and 85%, respectively, in comparison with beads obtained at other concentrations of DVB in the reaction mixture. The structure of free and polymer‐supported Co(II)(acen)2 complexes was verified with IR, UV, and magnetic measurements, which suggested a square planar geometry for the complexes under both conditions. The catalytic activities of the homogenized and heterogenized Co(II)(acen)2 complexes were compared by the evaluation of the rate constant (k) for the decomposition of hydrogen peroxide. The heterogenized Co(II)(acen)2 complex showed a high catalytic activity for the decomposition of hydrogen peroxide (k = 2.02 × 10?4 s?1) in comparison with the homogenized Co(II)(acen)2 complex (k = 4.32 × 10?6 s?1). The energy of activation for the decomposition of hydrogen peroxide with the heterogenized Co(II)(acen)2 complex was low (38.52 kJ mol?1) in comparison with that for the homogenized complex (73.44 kJ mol?1). In both cases, the rate of decomposition of hydrogen peroxide was directly proportional to the concentration of hydrogen peroxide and cobalt(II) ions. On the basis of experimental observations, a rate expression for the decomposition of hydrogen peroxide was derived. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1398–1411, 2003  相似文献   

12.
The ultraviolet absorption properties of a series of ferrocene‐modified hyper‐branched polyesters (HBPE‐Fcs) were analyzed by Ultraviolet/visible spectrometry. HBPE‐Fcs were used as burning rate catalyst components added into hydroxyl‐terminated polybutadiene (HTPB) based elastomers to investigate their migration behavior. Migration inhibition effects of HBPE‐Fcs in different aging conditions were analyzed. The diffusion coefficients (D) of the migration components were calculated according to Fick’s law of diffusion. The catalytic performances of HBPE‐Fcs for the thermal decomposition of cyclotrimethylenetrinitramine (RDX) were also investigated by non isothermal measurements using Kissinger method. The incorporation of ferrocenes into hyper‐branched polyesters (HBPEs) endows HBPEs with new ultraviolet absorption properties. The migration of HBPE‐Fc was minimized by grafting ferrocene on the hyper‐branched structures compared to that of simple ferrocene derivatives. HBPE‐Fcs present efficient catalytic effects on the thermal degradation of RDX; and, the catalytic reactions were characterized by decreased activation energies and increased rate constants.  相似文献   

13.
BACKGROUND: Polymers of phenols and aromatic amines have emerged as new materials in fields such as superconductors, coatings, laminates, photoresists and high‐temperature environments. The stability, kinetics and associated pollution of the thermal decomposition of oligophenols are of interest for the aforementioned fields. RESULTS: A new Schiff base polymer, derived from N,N′‐bis(2‐hydroxy‐3‐methoxyphenylmethylidene)‐2,6‐pyridinediamine, was prepared by oxidative polycondensation. Characterisations using Fourier transform infrared, UV‐visible, 1H NMR and 13C NMR spectroscopy, thermogravimetric/differential thermal analysis, gel permeation chromatography, cyclic voltammetry and conductivity measurements were performed. The number‐average (Mn) and weight‐average molecular weight (Mw) and dispersity (D = Mw/Mn) of the polymer were found to be 61 000 and 94 200 g mol?1 and 1.54, respectively. Apparent activation energies of the thermal decomposition of the polymer were determined using the Tang, Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and Coats–Redfern methods. The most likely decomposition process was a Dn deceleration type in terms of the Coats–Redfern and master plot results. CONCLUSION: The mechanism of the degradation process can be understood through the use of kinetic parameters obtained from various non‐isothermal methods. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Regioselective Markovnikov‐type addition of PhSH to alkynes (HC≡C‐R) has been performed using easily available nickel complexes. The non‐catalytic side reaction leading to anti‐Markovnikov products was suppressed by addition of γ‐terpinene to the catalytic system. The other side reaction leading to the bis(phenylthio)alkene was avoided by excluding phosphine and phosphite ligands from the catalytic system. It was found that catalytic amounts of Et3N significantly increased the yield and selectivity of the catalytic reaction. Under optimized conditions high product yields of 60–85% were obtained for various alkynes [R=n‐C5H11, CH2NMe2, CH2OMe, CH2SPh, C6H11(OH), (CH2)3CN]. The X‐ray structure of one of the synthesized products is reported.  相似文献   

15.
Thermal stability and decomposition mechanism of poly(p‐acryloyloxybenzoic) acid (PABA), p‐methacryloyloxybenzoic acid (PMBA), and their graft coproducts of PP were studied by differential scanning calorimetry, direct pyrolysis mass spectrometry, and TG/IR system, combined thermogravimetric analyzer, and FTIR spectrometer. The homopolymers and corresponding grafts were found to be stable in nitrogen atmosphere but started to decompose under atmospheric conditions when heated above 230°C. PABA and PAPA‐g‐PP showed a better thermal stability compared to the other polymer. The degradation proceeded predominantly by decomposition of side groups giving phenol, benzoic acid, hydroxybenzoic acid, carboxylic and carbonyl groups, and by decomposition of phenol into cyclodiene mainly. It was also seen that the degradation path did not greatly changed whether the PABA or PMBA were homopolymers or grafted onto PP but the induction temperature of grafted polymers was seen at some 10–20°C higher. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
A series of cationic nickel(II) compounds with various counter ions ([BF4], [CF3SO3]) and N‐bearing ligands (1,10‐phenanthroline, benzimidazole and terpyridine) were synthesized. The simple compound, Ni(Phen)2Cl2, was prepared as a reference compound. All title compounds were characterized by elemental analysis, and infrared spectra analyses and compounds, some specific ones, were further examined by X‐ray crystallographic analysis. Upon treatment with ethylaluminum sesquichloride, these nickel(II) compounds exhibited high activities (up to 88.5%/4 h) for butadiene polymerization and afforded liquid polybutadiene (Mw < 30,000) with a high cis‐content (up to 92.1%). Various polymerization conditions were investigated in detail, and it was found that less steric hindrance of the ligands enhanced the catalytic activities of the nickel(II) compounds. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40511.  相似文献   

17.
The catalytic oxidation of phenol with hydrogen peroxide using a synthetic copper(II)–Schiff base complex as catalyst has been investigated in phosphate buffer at pH 7 and 25 °C. In order to further investigate the reaction pathway, the catalytic oxidation of hydroquinone, p‐benzoquinone and catechol were also studied under the same conditions. These reactions were found to be pseudo‐first‐order with respect to the concentration of phenolic substances. The rate constants were also calculated. In the presence of catalyst, the kinetics and the HPLC analysis showed that for the first step phenol was oxidized to hydroquinone and catechol, and the catalyst easily promoted the formation of hydroquinone but not catechol, for the second step the dihydroxybenzenes were further oxidized to benzoquinone, and lastly short‐chain acids, including maleic acid and oxalic acid, were formed. The activity of the catalyst hardly decreased during the whole reaction. Addition of imidazole accelerated the oxidation of phenol. The catalytic decomposition of hydrogen peroxide using this catalyst was also investigated. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
The thermal stability and decomposition characteristic of nitramine modified double‐base propellant (RDX‐CMDB propellant) with high solid content and its components were investigated under dynamic and isothermal conditions by differential scanning calorimetry (DSC). It was found that the mixture of nitrocellulose (NC) and nitroglycerin (NG) had a promote effect on the decomposition of RDX. The activation energy (E ) and the pre‐exponential factor (A ) of two obviously exothermic processes were obtained by Friedman iso‐conversional method. The screening method suggested by ICTAC was used to determine the most probable mechanism functions and kinetic parameters of the two processes which are corresponding to the deceleration model and the autocatalytic model. The theoretical value was consistent with the experiment result.  相似文献   

19.
A series of (η6‐arene)ruthenium complexes have been tested in the arylation of arylpyridines. One (η6p‐cymene)ruthenium(N‐heterocyclic carbene) complex (labelled as 1 in the text) was found to be the most effective, being capable of arylating a wide set of substantially different arylpyridines. Complex 1 is also able to promote the regioselective deuteration of a series of arylated N‐heterocycles, via a nitrogen‐directed mechanism. Two of the deuterated amines were used to measure the kinetic isotope effect (KIE) in the arylation process. The detection of an inverse KIE, together with the observation that the C H activation process does not require the addition of a base, suggest that the rate‐limiting step in the arylation process may be different to that of previously reported studies.  相似文献   

20.
Five new poly(ether imides) have been prepared on reaction with oxydiphthalic anhydride (ODA) with five different diamines: 1,4‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 4,4′‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 1,3‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 2,6‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) pyridine, and 2,5‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) thiophene. Synthesized polymers showed good solubility in different organic solvents. The polyimide films have low water absorption of 0.3–0.7%, low dielectric constants of 2.82–3.19 at 1 MHz, and high optical transparency at 500 nm (>73%). These polyimides showed very high thermal stability with decomposition temperatures (5% weight loss) up to 531°C in air and good isothermal stability; only 0.4% weight loss occurred at 315°C after 5 h. Transparent thin films of these polyimides exhibited tensile strength up to 147 MPa, a modulus of elasticity up to 2.51 GPa and elongation at break up to 30% depending upon the repeating unit structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 821–832, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号