首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Cluster Based Routing Protocol for Mobile Nodes in Wireless Sensor Network   总被引:1,自引:1,他引:0  
Mobility of sensor nodes in wireless sensor network (WSN) has posed new challenges particularly in packet delivery ratio and energy consumption. Some real applications impose combined environments of fixed and mobile sensor nodes in the same network, while others demand a complete mobile sensors environment. Packet loss that occurs due to mobility of the sensor nodes is one of the main challenges which comes in parallel with energy consumption. In this paper, we use cross layer design between medium access control (MAC) and network layers to overcome these challenges. Thus, a cluster based routing protocol for mobile sensor nodes (CBR-Mobile) is proposed. The CBR-Mobile is mobility and traffic adaptive protocol. The timeslots assigned to the mobile sensor nodes that had moved out of the cluster or have not data to send will be reassigned to incoming sensor nodes within the cluster region. The protocol introduces two simple databases to achieve the mobility and traffic adaptively. The proposed protocol sends data to cluster heads in an efficient manner based on received signal strength. In CBR-Mobile protocol, cluster based routing collaborates with hybrid MAC protocol to support mobility of sensor nodes. Schedule timeslots are used to send the data message while the contention timeslots are used to send join registration messages. The performance of proposed CBR-Mobile protocol is evaluated using MATLAB and was observed that the proposed protocol improves the packet delivery ratio, energy consumption, delay and fairness in mobility environment compared to LEACH-Mobile and AODV protocols.  相似文献   

2.
Power management is an important issue in wireless sensor networks (WSNs) because wireless sensor nodes are usually battery powered, and an efficient use of the available battery power becomes an important concern specially for those applications where the system is expected to operate for long durations. This necessity for energy efficient operation of a WSN has prompted the development of new protocols in all layers of the communication stack. Provided that, the radio transceiver is the most power consuming component of a typical sensor node, large gains can be achieved at the link layer where the medium access control (MAC) protocol controls the usage of the radio transceiver unit. MAC protocols for sensor networks differ greatly from typical wireless networks access protocols in many issues. MAC protocols for sensor networks must have built‐in power conservation, mobility management, and failure recovery strategies. Furthermore, sensor MAC protocols should make performance trade‐off between latency and throughput for a reduction in energy consumption to maximize the lifetime of the network. This is in general achieved through duty cycling the radio transceiver. Many MAC protocols with different objectives were proposed for wireless sensor networks in the literature. Most of these protocols take into account the energy efficiency as a main objective. There is much more innovative work should be done at the MAC layer to address the hard unsolved problems. In this paper, we first outline and discuss the specific requirements and design trade‐offs of a typical wireless sensor MAC protocol by describing the properties of WSN that affect the design of MAC layer protocols. Then, a typical collection of wireless sensor MAC protocols presented in the literature are surveyed, classified, and described emphasizing their advantages and disadvantages whenever possible. Finally, we present research directions and identify open issues for future medium access research. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, a comprehensive survey of the medium access control (MAC) approaches for wireless mobile ad hoc networks is presented. The complexity in MAC design for wireless ad hoc networks arises due to node mobility, radio link vulnerability and the lack of central coordination. A series of studies on MAC design has been conducted in the literature to improve medium access performance in different aspects as identified by the different performance metrics. Tradeoffs among the different performance metrics (such as between throughput and fairness) dictate the design of a suitable MAC protocol. We compare the different proposed MAC approaches, identify their problems and discuss the possible remedies. The interactions among the MAC and the higher layer protocols such as routing and transport layer protocols are discussed and some interesting research issues are also identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Currently most wireless sensor network applications assume the presence of single-channel medium access control (MAC) protocols. However, lower sensing range result in dense networks, single-channel MAC protocols may be inadequate due to higher demand for the limited bandwidth. In this paper we proposed a method of multi-channel support for DMAC in Wireless sensor networks (WSNs). The channel assignment method is based on local information of nodes. Our multi-channel DMAC protocol implement channel distribution before message collecting from source nodes to sink node and made broadcasting possible in DMAC. Analysis and simulation result displays this multi-channel protocol obviously decreases the latency without increasing energy consumption.  相似文献   

5.
In this paper we propose high throughput collision free, mobility adaptive and energy efficient medium access protocol (MAC) called Collision Free Mobility Adaptive (CFMA) for wireless sensor networks. CFMA ensures that transmissions incur no collisions, and allows nodes to undergo sleep mode whenever they are not transmitting or receiving. It uses delay allocation scheme based on traffic priority at each node and avoids allocating same backoff delay for more than one node unless they are in separate clusters. It also allows nodes to determine when they can switch to sleep mode during operation. CFMA for mobile nodes provides fast association between the mobile node and the cluster coordinator. The proposed MAC performs well in both static and mobile scenarios, which shows its significance over existing MAC protocols proposed for mobile applications. The performance of CFMA is evaluated through extensive simulation, analysis and comparison with other mobility aware MAC protocols. The results show that CFMA outperforms significantly the existing CSMA/CA, Sensor Mac (S-MAC), Mobile MAC (MOB-MAC), Adaptive Mobility MAC (AM-MAC), Mobility Sensor MAC (MS-MAC), Mobility aware Delay sensitive MAC (MD-MAC) and Dynamic Sensor MAC (DS-MAC) protocols including throughput, latency and energy consumption.  相似文献   

6.
Ju-Lan  Izhak   《Ad hoc Networks》2008,6(1):127-153
It has been proposed to upgrade the performance of medium access control (MAC) schemes through the use of beamforming directional antennas, to achieve better power and bandwidth utilization. In this paper, we consider a shared wireless medium as employed in a mobile ad hoc wireless network. We present and analyze a random access MAC algorithm that is combined with the use of directional beamforming formed by each transmitting mobile entity. Mathematical equations are derived to characterize the throughput performance of such a directional-ALOHA (D-ALOHA) algorithm. We describe the interferences occurring at each receiving node by considering both distance based and SINR based interference models. The D-ALOHA protocol includes the establishment of a (in-band or out-of-band) control sub-channel that is used for the transmission of location update messages. The latter is used for allowing mobile nodes to track the location of their intended destination mobiles. We present a separation property result that allows us to express the network throughput performance as a product of two factors: (1) a stationary factor that represents the system throughput performance under a perfect receiver location update process, and (2) a mobility factor that embeds the user mobility and location update processes in expressing the level of throughput degradation caused due to location update errors. We employ our derived mathematical equations, as well as carry out simulation evaluations, to present an extensive set of performance results. The throughput performance of such a beamforming based MAC protocol is characterized in terms of the system’s traffic loading conditions, the selected beamwidths of the antennas at the transmitting mobiles, the mobility levels of the nodal entities and the bandwidth capacity allocated to the control channel used for location update purposes. We show that the D-ALOHA protocol can provide a significant upgrade of network performance when the transmitting nodes adapt their beamwidth levels in accordance with our presented control scheme. The latter incorporates the involved tradeoff between the attained higher potential spatial reuse factors and the realized higher destination pointing process errors, and consequently uses nodal mobility levels and channel loading conditions as key parameters.  相似文献   

7.
The vision to connect everyday physical objects to the Internet promises to create the Internet of Things (IoT), which is expected to integrate the diverse technologies such as sensors, actuators, radio frequency identification, communication technologies, and Internet protocols. Thus, IoT promises to transfer traditional industry to advance digital industry known as the Industry 4.0. At the core of the Industry 4.0 are the wireless sensor networks (WSNs) and wireless sensor and actuator networks (WSANs) that led to the development of industrial wireless sensor networks (IWSNs) and industrial wireless sensor and actuator networks (IWSANs). These networks play a central role of connecting machines, parts, products, and humans and create a diverse set of new applications to support intelligent and autonomous decision making. The IWSAN is a promising technology for numerous industrial applications because of their several potential benefits such as simple deployment, low cost, less complexity, and mobility support. However, despite such benefits, they impose several unique challenges at different layers of the protocol stack when deploying them for various monitoring and control applications in the Industry 4.0. In this article, we explore IWSAN, its applications, requirements, challenges, and solutions in the context of industrial control applications. Our main focus is on the medium access control (MAC) layer that can be exploited to satisfy such requirements. Our discussion presents extensive background study of the MAC schemes and it reviews the MAC protocols of the existing wireless standards and technologies. A number of application‐specific MAC protocols developed to support industrial applications, which are not part of these standards, are also elaborated. We rationalize to what extent the existing standards and protocols help in solving such requirements as laid down by the Industry 4.0. In the end, we emphasize on existing challenges and present important future directions.  相似文献   

8.
A number of tiny sensor nodes are strategically placed in and around the human body to obtain physiological information. The sensor nodes are connected to a coordinator or a data collector to form a wireless body area network (WBAN). WBAN consists of variety of medical and non-medical applications with aggregate data rate requirement ranging from few bytes per second to 10 Mbps. These applications are having relatively different energy saving, reliability and quality of service (QoS) requirements. For example, emergency medical data are highly erratic but should be transferred with high reliability and minimum delay, whereas electrocardiogram and electroencephalogram applications are constant bit rate traffic which need to be transferred with moderate reliability. Additionally, non-medical applications include variable bit rate traffic and their jitter and delay requirements must also be met. On the above, a sensor node should spend minimum energy and conserve power to increase its life time in the network. The existing media access control (MAC) protocols present in various short and medium range wireless technologies such as 802.11 and 802.15.4 have been designed for specific purposes, and therefore, do not fulfill the diverse performance requirements across all WBAN applications. In this paper, we propose a poll-based MAC protocol, PMAC for WBAN, which can meet such diversified functional requirements of various WBAN applications. In particular, we introduce few concepts in polling based channel access mechanism to make an energy efficient and QoS aware MAC protocol. The design has been validated by obtaining the performance of proposed PMAC protocol through simulation.  相似文献   

9.
Mobility management in Wireless Sensor Networks (WSNs) is a complex problem that must be taken into account in all layers of the protocol stack. But this mobility becomes very challenging at the MAC level in order to do not degrade the energy efficiency between sensor nodes that are in communication. However, among medium access protocols, sampling protocols reflect better the dynamics of such scenarios. Nevertheless, the main problem, of such protocols, remains the management of collisions and idle listening between nodes. Previous approaches like B-MAC and X-MAC, based on sampling protocols present some shortcomings. Therefore, we address the mobility issue of WSNs that use as medium access sampling protocols. Firstly, we propose a mobile access solution based on the X-MAC protocol which remains a reference protocol. This protocol, called MoX-MAC, incorporates different mechanisms that enables to mitigate the energy consumption of mobile sensor nodes. Furthermore, we extend our former work (Ba et al. in Proc. of IEEE WMNC, 2011) by evaluating the lifetime of static nodes with respect to MoX-MAC protocol, as well determine the degree of depletion of static nodes due to the presence of mobile nodes.  相似文献   

10.
Low energy consumption is a critical design requirement for most wireless sensor network (WSN) applications. Due to minimal transmission power levels, time-varying environmental factors and mobility of nodes, network neighborhood changes frequently. In these conditions, the most critical issue for energy is to minimize the transactions and time consumed for neighbor discovery operations. In this paper, we present an energy-efficient neighbor discovery protocol targeted at synchronized low duty-cycle medium access control (MAC) schemes such as IEEE 802.15.4 and S-MAC. The protocol effectively reduces the need for costly network scans by proactively distributing node schedule information in MAC protocol beacons and by using this information for establishing new communication links. Energy consumption is further reduced by optimizing the beacon transmission rate. The protocol is validated by performance analysis and experimental measurements with physical WSN prototypes. Experimental results show that the protocol can reduce node energy consumption up to 80% at 1–3 m/s node mobility.  相似文献   

11.
介质访问控制协议(Medium Access Control , MAC)是水声通信网络中的一种关键技术。与陆地无线通信系统使用无线电波有所不同,水声通信网络依靠水声进行通信。水声通信网络中的MAC协议设计面临许多挑战面,如:传播延迟大、带宽窄、电池不易更换或充电、节点发射功率受限等。因此,陆地无线通信系统的各MAC协议不能直接应用到水声通信网络。本文提出了一种适用于水声通信网络的MACA(MACA-C)协议,该协议主要将传输数据包和控制包结合使用,在每轮握手的过程中,该协议通过发送列的首数据包和RTS控制包来改善信道利用率。仿真结果也表明MACA-C能够达到较高的和稳定的吞吐量性能,同时在保持低碰撞率的前提下增加信道利用率。   相似文献   

12.
Directional communication in wireless sensor networks minimizes interference and thereby increases reliability and throughput of the network. Hence, directional wireless sensor networks (DWSNs) are fastly attracting the interests of researchers and industry experts around the globe. However, in DWSNs the conventional medium access control protocols face some new challenges including the synchronization among the nodes, directional hidden terminal and deafness problems, etc. For taking the advantages of spatial reusability and increased coverage from directional communications, a low duty cycle directional Medium Access control protocol for mobility based DWSNs, termed as DCD-MAC, is developed in this paper. To reduce energy consumption due to idle listening, duty cycling is extensively used in WSNs. In DCD-MAC, each pair of parent and child sensor nodes performs synchronization with each other before data communication. The nodes in the network schedule their time of data transmissions in such a way that the number of collisions occurred during transmissions from multiple nodes is minimized. The sensor nodes are kept active only when the nodes need to communicate with each other. The DCD-MAC exploits localized information of mobile nodes in a distributed manner and thus it gives weighted fair access of transmission slots to the nodes. As a final point, we have studied the performance of our proposed protocol through extensive simulations in NS-3 and the results show that the DCD-MAC gives better reliability, throughput, end-to-end delay, network lifetime and overhead comparing to the related directional MAC protocols.  相似文献   

13.
Power management is an important issue in wireless sensor networks (WSNs) because wireless sensor nodes are usually battery powered, and an efficient use of the available battery power becomes an important concern specially for those applications where the system is expected to operate for long durations. This necessity for energy efficient operation of a WSN has prompted the development of new protocols in all layers of the communication stack. If the radio transceiver is the most power consuming component of a typical sensor node, large gains can be achieved at the link layer where the medium access control (MAC) protocol controls the usage of the radio transceiver unit.  相似文献   

14.
Energy consumption of sensor nodes is one of the crucial issues in prolonging the lifetime of wireless sensor networks. One of the methods that can improve the utilization of sensor nodes batteries is the clustering method. In this paper, we propose a green clustering protocol for mobile sensor networks using particle swarm optimization (PSO) algorithm. We define a new fitness function that can optimize the energy consumption of the whole network and minimize the relative distance between cluster heads and their respective member nodes. We also take into account the mobility factor when defining the cluster membership, so that the sensor nodes can join the cluster that has the similar mobility pattern. The performance of the proposed protocol is compared with well-known clustering protocols developed for wireless sensor networks such as LEACH (low-energy adaptive clustering hierarchy) and protocols designed for sensor networks with mobile nodes called CM-IR (clustering mobility-invalid round). In addition, we also modify the improved version of LEACH called MLEACH-C, so that it is applicable to the mobile sensor nodes environment. Simulation results demonstrate that the proposed protocol using PSO algorithm can improve the energy consumption of the network, achieve better network lifetime, and increase the data delivered at the base station.  相似文献   

15.
In this paper, we propose a new medium access control (MAC) protocol for wireless sensor networks called MMSMAC (multi-mode sensor MAC protocol), which operates according to the application requirements and traffic load, in three main modes: synchronous, asynchronous, and hybrid. In the synchronous mode, MMSMAC organizes the sensor nodes under even and odd clusters. Each sensor node has its own active/sleep and send/receive periods according to its cluster identifier, which ensures better load balancing among nodes. In the asynchronous mode, sensor nodes communicate freely without the utilization of even and odd clusters. We propose a mechanism to wake up the destination node and minimize the overhead. In this mode, we propose another mechanism to circumvent the problem of hidden host. In the hybrid mode, the features of asynchronous and asynchronous modes are combined. Our simulation results and analysis show that each of the MMSMAC modes shows convincing performance gains and outperforms B-MAC and Hybrid CSMA/TDMA protocols.  相似文献   

16.
1 IntroductionMobileadhocnetworksareasetofmobilenodeswhichformandself configurethenetworkwithoutthepre deployedcentraladministrativein frastructure (e.g .thebasestationofWLAN) .Thedemandforadhocnetworkshasbeenbloominginthepastyearsinthecommercialandmilitaryappli cations ,becauseonlyadhocnetworkscanbeappliedinthesituationswherethecentraladministrativein frastructurecan tbe pre installed (e .g .battlefields,disasterrescue)orisnoteconomicaltoinstallbecauseoftemporaryuse (e .g .ameetingintherent…  相似文献   

17.
The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum‐Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum‐based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake‐up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.  相似文献   

18.
Technological advances in low-power digital signal processors, radio frequency (RF) circuits, and micromechanical systems (MEMS) have led to the emergence of wirelessly interconnected sensor nodes. The new technological possibilities emerge when a large number of tiny intelligent wireless sensor nodes are combined. The sensor nodes are typically battery operated and, therefore, energy constrained. Hence, energy conservation is one of the foremost priorities in design of wireless sensor networks (WSNs) protocols. Limited power resources and bursty nature of the wireless channel are the biggest challenges in WSNs. Link adaptation techniques improve the link quality by adjusting medium access control (MAC) parameters such as frame size, data rate, and sleep time, thereby improving energy efficiency. In This work, our study emphasizes optimizing WSNs by building a reliable and adaptive MAC without compromising fairness and performance. Here, we present link adaptation techniques at MAC layer to enhance energy efficiency of the sensor nodes. The proposed MAC uses a variable frame size instead of a fixed frame size for transmitting data. In order to get accurate estimations, as well as reducing the computation complexity, we utilize the extended Kalman filter to predict the optimal frame size for improving energy efficiency and goodput, while minimizing the sensor memory requirement. Next, we designed and verified different network models to evaluate and analyze the proposed link adaptation schemes. The correctness of the proposed theoretical models have been verified by conducting extensive simulations. We also prototype the proposed scheme with the MAC protocol on Berkeley Motes. Both prototype and simulation results show that the proposed algorithms improve the energy efficiency by up to 15%.  相似文献   

19.
Due to the characteristics of underwater acoustic channel, such as long propagation delay and low available bandwidth, media access control (MAC) protocol designed for the underwater acoustic sensor network (UWASN) is quite different from that for the terrestrial wireless sensor network. However, for the contention-based MAC protocols, the packet transmission time is long because of the long preamble in real acoustic modems, which increase the packet collisions. And the competition phase lasts for long time when many nodes are competing for the channel to access. For the schedule-based MAC protocols, the delay is too long, especially in a UWASN with low traffic load. In order to resolve these problems, a hybrid reservation-based MAC (HRMAC) protocol is proposed for UWASNs in this paper. In the proposed HRMAC protocol, the nodes reserve the channel by declaring and spectrum spreading technology is used to reduce the collision of the control packets. Many nodes with data packets to be transmitted can reserve the channel simultaneously, and nodes with reserved channel transmit their data in a given order. The performance analysis shows that the proposed HRMAC protocol can improve the channel efficiency greatly. Simulation results also show that the proposed HRMAC protocol achieves better performance, namely higher network throughput, lower packet drop ratio, smaller end-to-end delay, less overhead of control packets and lower energy overhead, compared to existing typical MAC protocols for the UWASNs.  相似文献   

20.
Wireless ATM networks: technology status and future directions   总被引:3,自引:0,他引:3  
The concept of “wireless ATM” (WATM), first proposed in 1992, is now being actively considered as a potential framework for new-generation wireless communication networks capable of supporting integrated, quality-of service (QoS) based multimedia services. In this review paper, we outline the technological rationale for wireless ATM, present a system-level architecture, and discuss key design issues for both mobile ATM switching infrastructure and radio access subsystems. The WATM radio access layer issues covered in this paper include: spectrum allocation; spectrum etiquette; modem technology; and medium access/data link control (MAC/DLC) protocols. Mobile ATM aspects such as ATM signaling extensions for handoff control, location management, and mobile QoS control are discussed. A summary of current wireless/mobile ATM technology development and standardization status is given, including an outline of our WATMnet prototype. The paper concludes with a discussion of future directions for wireless ATM technology such as Internet protocol (IP) integration and mobile multimedia terminals/applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号