首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Androdioecy is the crucial transition state in the evolutionary direction of hermaphroditism to dioecy, however, the molecular mechanisms underlying the formation of this sex system remain unclear. While popular in China for its ornamental and cultural value, Osmanthus fragrans has an extremely rare androdioecy breeding system, meaning that there are both male and hermaphroditic plants in a population. To unravel the mechanisms underlying the formation of androdioecy, we performed small RNA sequencing studies on male and hermaphroditic O. fragrans. A total of 334 miRNAs were identified, of which 59 were differentially expressed. Functional categorization revealed that the target genes of differentially expressed miRNAs were mainly involved in the biological processes of reproductive development and the hormone signal transduction pathway. We speculated that the miRNA160, miRNA167, miRNA393 and miRNA396 families may influence the sex differentiation in O. fragrans. Overall, our study is the first exploration of miRNAs in the growth and development process of O. fragrans, and is also the first study of androdioecious plants from the miRNA sequencing perspective. The analysis of miRNAs and target genes that may be involved in the sex differentiation process lay a foundation for the ultimate discovery of the androdioecious molecular mechanism in O. fragrans.  相似文献   

2.
3.
4.
5.
6.
7.
MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs that play important roles in plant growth, development, and stress response processes. Verticillium wilt is a vascular disease in plants mainly caused by Verticillium dahliae Kleb., the soil-borne fungal pathogen. However, the role of miRNAs in the regulation of Verticillium defense responses is mostly unknown. This study aimed to identify new miRNAs and their potential targets that are involved in the regulation of Verticillium defense responses. Four small RNA libraries and two degradome libraries from mock-infected and infected roots of cotton (both Gossypium hirsutum L. and Gossypium barbadense L.) were constructed for deep sequencing. A total of 140 known miRNAs and 58 novel miRNAs were identified. Among the identified miRNAs, many were differentially expressed between libraries. Degradome analysis showed that a total of 83 and 24 genes were the targets of 31 known and 14 novel miRNA families, respectively. Gene Ontology analysis indicated that many of the identified miRNA targets may function in controlling root development and the regulation of Verticillium defense responses in cotton. Our findings provide an overview of potential miRNAs involved in the regulation of Verticillium defense responses in cotton and the interactions between miRNAs and their corresponding targets. The profiling of these miRNAs lays the foundation for further understanding of the function of small RNAs in regulating plant response to fungal infection and Verticillium wilt in particular.  相似文献   

8.
Aberration during the development of the central nervous system (CNS) due to environmental factors underlies a variety of adverse developmental outcomes. Paraquat (PQ) is a widely studied neurotoxicant that perturbs the normal structure/function of adult CNS. Yet, the impacts of PQ exposure on the developing CNS remain unclear. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development. Thus in the present study, we analyzed the impacts of PQ on the miRNome of human neural progenitor cells (hNPCs) during proliferation by using the Exiqon miRCURY™ LNA Array. A total of 66 miRNAs were identified as differentially expressed in proliferating hNPCs upon PQ treatment. miRTarBase prediction identified 1465 mRNAs, including several genes (e.g., nestin, sox1, ngn1) previously proved to be associated with the neural proliferation and differentiation, as target genes of PQ-induced differentially expressed miRNAs. The database for annotation, visualization and integrated discovery (DAVID) bioinformatics analysis showed that target genes were enriched in regulation of cell proliferation and differentiation, cell cycle and apoptosis as well as tumor protein 53 (p53), Wnt, Notch and mitogen-activated protein kinases (MAPK) signaling pathways (p < 0.001). These findings were confirmed by real-time RT-PCR. Based on our results we conclude that PQ-induced impacts on the miRNA profiling of hNPCs undergoing proliferation may underlie the developmental neurotoxicity of PQ.  相似文献   

9.
A lobed leaf is a common trait in plants, but it is very rare in Lauraceae plants, including species of Phoebe. In the study of germplasm resources of Phoebe neurantha, we found lobed leaf variant seedlings, and the variation could be inherited stably. Studying the lobed leaf mechanism of P. neurantha var. lobophylla can offer insight into the leaf development mechanism of woody plants. RNA-seq and small RNA-seq analysis results showed that a total of 8091 differentially expressed genes (DEGs) and 16 differentially expressed miRNAs were identified in P. neurantha var. lobophylla. Considering previous research results, a leaf margin morphological development related miRNA, pne-miRNA319a, was primary identified as a candidate miRNA. Target gene prediction showed that a total of 2070 genes were predicted to be the target genes of differentially expressed miRNAs. GO enrichment analysis of differentially expressed target genes suggested that PnTCP2 is related to lobed leaf formation. The TRV-VIGS gene silencing of PnTCP2 led to lobed leaves in P. neurantha seedlings. The downregulation of PnTCP2 led to lobed leaves. The yeast two-hybrid test and bimolecular fluorescence complementation test confirmed that the PnTCP2 protein interacted with the PnLBD41 protein. Based on the expression analysis of gene-silenced leaves and RNA-seq and small RNA-seq analysis results, pne- miRNA319a and PnLBD41 might also play important roles in this process. In conclusion, PnTCP2 plays an important and vital role in the formation of the lobed leaves of P. neurantha var. lobophylla.  相似文献   

10.
11.
12.
Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth.  相似文献   

13.
MicroRNAs (miRNAs) play important regulatory roles in development and stress responses in plants. Lead (Pb) is a non-essential element that is highly toxic to living organisms. Platanus acerifolia is grown as a street tree in cities throughout temperate regions for its importance in improving the urban ecological environment. MiRNAs that respond to abiotic stresses have been identified in plants; however, until now, the influence of Pb stress on P. acerifolia miRNAs has not been reported. To identify miRNAs and predict their target genes under Pb stress, two small RNA and two degradome libraries were constructed from Pb-treated and Pb-free leaves of P. acerifolia seedlings. After sequencing, 55 known miRNAs and 129 novel miRNAs were obtained, and 104 target genes for the miRNAs were identified by degradome sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to predict the functions of the targets. The expressions of eight differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report about P. acerifolia miRNAs and their target genes under Pb stress. This study has provided data for further research into molecular mechanisms involved in resistance of P. acerifolia to Pb stress.  相似文献   

14.
Female endocrinological symptoms, such as premature ovarian inefficiency (POI) are caused by diminished ovarian reserve and chemotherapy. The etiology of POI remains unknown, but this can lead to infertility. This has accelerated the search for master regulator genes or other molecules that contribute as enhancers or silencers. The impact of regulatory microRNAs (miRNAs) on POI has gained attention; however, their regulatory function in this condition is not well known. RNA sequencing was performed at four stages, 2-(2 W), 6-(6 W), 15-(15 W), and 20-(20 W) weeks, on ovarian tissue samples and 5058 differentially expressed genes (DEGs) were identified. Gene expression and enrichment were analyzed based on the gene ontology and KEGG databases, and their association with other proteins was assessed using the STRING database. Gene set enrichment analysis was performed to identify the key target genes. The DEGs were most highly enriched in 6 W and 15 W groups. Figla, GDF9, Nobox, and Pou51 were significantly in-creased at 2 W compared with levels at 6 W and 20 W, whereas the expression of Foxo1, Inha, and Taf4b was significantly de-creased at 20 W. Ccnd2 and Igf1 expression was maintained at similar levels in each stage. In total, 27 genes were upregulated and 26 genes interacted with miRNAs; moreover, stage-specific upregulated and downregulated interactions were demonstrated. Increased and decreased miRNAs were identified at each stage in the ovaries. The constitutively expressed genes, Ccnd2 and Igf1, were identified as the major targets of many miRNAs (p < 0.05), and Fshr and Foxo3 interacted with miRNAs, namely mmu-miR-670-3p and mmu-miR-153-3p. miR-26a-5p interacted with Piwil2, and its target genes were downregulated in the 20 W mouse ovary. In this study, we aimed to identify key miRNAs and their target genes encompassing the reproductive span of mouse ovaries using mRNA and miRNA sequencing. These results indicated that gene sets are regulated in the reproductive stage-specific manner via interaction with miRNAs. Furthermore, consistent expression of Ccnd2 and Igf1 is considered crucial for the ovarian reserve and is regulated by many interactive miRNAs.  相似文献   

15.
16.
17.
18.
Litter size is an important indicator to measure the production capacity of commercial pigs. Spontaneous embryo loss is an essential factor in determining sow litter size. In early pregnancy, spontaneous embryo loss in porcine is as high as 20–30% during embryo implantation. However, the specific molecular mechanism underlying spontaneous embryo loss at the end of embryo implantation remains unknown. Therefore, we comprehensively used small RNA sequencing technology, bioinformatics analysis, and molecular experiments to determine the microRNA (miRNA) expression profile in the healthy and arresting embryo implantation site of porcine endometrium on day of gestation (DG) 28. A total of 464 miRNAs were identified in arresting endometrium (AE) and healthy endometrium (HE), and 139 differentially expressed miRNAs (DEMs) were screened. We combined the mRNA sequencing dataset from the SRA database to predict the target genes of these miRNAs. A quantitative real-time PCR assay identified the expression levels of miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on differentially expressed target genes of DEMs, mainly enriched in epithelial development and amino acids metabolism-related pathways. We performed fluorescence in situ hybridization (FISH) and the dual-luciferase report gene assay to confirm miRNA and predicted target gene binding. miR-205 may inhibit its expression by combining 3′-untranslated regions (3′ UTR) of tubulointerstitial nephritis antigen-like 1 (TINAGL1). The resulting inhibition of angiogenesis in the maternal endometrium ultimately leads to the formation of arresting embryos during the implantation period. This study provides a reference for the effect of miRNA on the successful implantation of pig embryos in early gestation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号