首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary: The preparation of poly(ε‐caprolactone)‐g‐TiNbO5 nanocomposites via in situ intercalative polymerization of ε‐caprolactone initiated by an aluminium complex is described. These nanocomposites were obtained in the presence of HTiNbO5 mineral pre‐treated by AlMe3, but non‐modified by tetraalkylammonium cations. These hybrid materials obtained have been characterized by Fourier transform infrared absorption spectroscopy, wide‐angle X‐ray scattering, scanning electron microscopy, and dynamic mechanical analysis. Layered structure delamination and homogeneous distribution of mineral lamellae in the poly(ε‐caprolactone) (PCL) is figured out and strong improvement of the mechanical properties achieved. The storage modulus of the nanocomposites is enhanced as compared to pure PCL and increases monotonously with the amount of the filler in the range 3 to 10 wt.‐%.

SEM image of the fractured surface of a PCL‐TiNbO5 nanocomposite film.  相似文献   


2.
The effect of nanoclay on structural relaxation of unsaturated polyester (UP) resin containing 3 wt% Cloisite 10A (UP/10A), 3 wt% Cloisite 30B (UP/30B), and the neat resin was investigated by differential scanning calorimetry (DSC) and temperature modulated differential scanning calorimetry (TMDSC). X‐ray diffraction and transmission electron microscopy were used to evaluate the morphology of UP/10A and UP/30B nanocomposites. According to the strong‐fragile concept proposed by Angel, the values of the fragility index m were determined. The average size of a cooperative rearranging region (CRR) at the glass transition temperature (Tg) was then calculated. Considering the significant increase in δT (the mean temperature fluctuation) of UP/10A, it was concluded that UP/10A system was more heterogeneous than the neat UP and UP/30B specimen. Significant drop in Tg accompanied by an increase in δT and a decrease in characteristic length of cooperativity at glass transition temperature (ξTg) might be a sign of existence of smaller average CRR sizes in UP/10A nanocomposites. Results showed that the increase in the concentration of styrene between galleries of Cloisite 10A caused a decrease in styrene content outside the nanoclay layers leading to diminishing of crosslink density and as a consequence the decrease of ξTg. POLYM. ENG. SCI., 54:2859–2865, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
A chemical strategy is attempted to modify graphene for its facilitated dispersion in poly(ε‐caprolactone) (PCL) matrix. Herein, graphite oxide is subjected to sequential treatment with phenyl isocyanate and vitamin C (VC) to yield graphene nanosheets (iG‐VC). It is noteworthy that following the reduction treatment, iG‐VC graphene sheets exfoliate within the PCL matrix and show appreciable interfacial compatibility with PCL matrix in organic solvent by virtue of improved polarity from isocyanate treatment. The tensile yield strength and Young's modulus of the PCL/iG‐VC composite exhibit pronounced enhancement as compared to neat PCL, despite of mere composition of graphene sheets. The tensile yield stress of composite is increased notably to reach 18.6 MPa at 3 wt% graphene sheets as compared to neat PCL. Likewise, Young's modulus of composite is observed to increase from 370 to 470 MPa at 5 wt% graphene sheets. Moreover, the crystallization temperature (T c) and crystallinity of PCL increase significantly upon incorporation of small amount of iG‐VC. Ultimately, functional role of iG‐VC graphene sheets is demonstrated in enhancing electrical conductivity of PCL‐based nanocomposites. The plausible mechanisms are also proposed to explain the increased T c, improved mechanical property, and improved electrical conductivity of PCL/iG‐VC composite.

  相似文献   


4.
Nanocomposites based on biodegradable poly(?‐caprolactone) (PCL) and layered silicates (montmorillonite, MMT) were prepared either by melt interaction with PCL or by in situ ring‐opening polymerization of ?‐caprolactone as promoted by the so‐called coordination‐insertion mechanism. Both non‐modified clays (Na+ ‐MMT) and silicates modified by various alkylammonium cations were studied. Mechanical and thermal properties were examined by tensile testing and thermogravimetric analysis. Even at a filler content as low as 3 wt% of inorganic layered silicate, the PCL‐layered silicate nanocomposites exhibited improved mechanical properties (higher Young's modulus) and increased thermal stability as well as enhanced flame retardant characteristics as a result of a charring effect. It was shown that the formation of PCL‐based nanocomposites depended not only on the nature of the ammonium cation and related functionality but also on the selected synthetic route, melt intercalation vs. in situ intercalative polymerization. Interestingly enough, when the intercalative polymerization of ?‐caprolactone was carried out in the presence of MMT organo‐modified with ammonium cations bearing hydroxyl functions, nanocomposites with much improved mechanical properties were recovered. Those hybrid polyester layered silicate nanocomposites were characterized by a covalent bonding between the polyester chains and the clay organo‐surface as a result of the polymerization mechanism, which was actually initiated from the surface hydroxyl functions adequately activated by selected tin (II) or tin (IV) catalysts.  相似文献   

5.
This study focuses on the electrical properties of polycarbonate (PC)/poly(ε‐caprolactone) (PCL)‐multiwall carbon nanotube (MWCNT) nanocomposites. MWCNTs were incorporated into thermoplastic PC matrix by simple melt blending using biodegradable PCL based concentrates with MWCNT loadings (3.5 wt%). Because of the lower interfacial energy between MWCNT and PCL, the nanotubes remain in their excellent dispersion state into matrix polymer. Thus, electrical percolation in PC/PCL‐MWCNT nanocomposites was obtained at lower MWCNT loading rather than direct incorporation of MWCNT into PC matrix. AC and DC electrical conductivity of miscible PC/PCL‐MWCNT nanocomposites were studied in a broad frequency range, 101?106 Hz and resulted in low percolation threshold (pc) of 0.14 wt%, and the critical exponent (t) of 2.09 from the scaling law equation. The plot of logσDC versus p?1/3 showed linear variation and indicated the existence of tunneling conduction among MWCNTs. At low MWCNT loading, the influence of large polymeric gaps between conducting clusters is the reason for the frequency dependent electrical conductivity. Transmission electron microscopy and field emission scanning electron microscopy showed that MWCNTs were homogeneously dispersed and developed a continuous interconnected network path throughout the matrix phase and miscibility behavior of the polymer blend. POLYM. ENG. SCI., 54:646–659, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
Poly(ε‐caprolactone) (PCL) was melt compounded with “Bucky gels”‐like mixture that prepared by grinding multiwalled carbon nanotubes (MWNTs) and ionic liquids (ILs). Raman spectrum showed the significant interaction between ILs and MWNTs. The dielectric behavior of PCL nanocomposites based on unmodified and IL‐modified MWNTs was studied from 40 Hz to 30 MHz. The addition of ILs significantly enhanced the dielectric property of PCL/IL/MWNT ternary nanocomposites, which was much higher than that of the sum of PCL/IL with PCL/MWNT binary nanocomposites. The dielectric properties of PCL/IL/MWNT nanocomposites were mainly influenced by ILs in low frequency and were dominated by MWNTs in high frequency. SEM results revealed that a more uniform and fine dispersion of MWNTs were achieved throughout the PCL matrix because of ILs. The addition of ILs in nanocomposites changed the crystallinity of PCL. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40231.  相似文献   

7.
The air‐side surface composition of a series of poly(ε‐caprolactone)–perfluoropolyether–poly(ε‐caprolactone) triblock copolymers with different compositions and block lengths have been studied by angle‐dependent X‐ray photoelectron spectroscopy (XPS). The weight percentage of the perfluoropolyether (PFPE) and polycaprolactone (PCL) blocks, and ethylene oxide linker (RH) has been calculated in different ways: from C1s, O1s and F1s photoemission peaks and by line fitting of the C1s and O1s envelopes. The atomic sensitivity factors and the parameters used to fit the peak envelopes have been experimentally determined using some reference materials. A critical discussion of the different methods used in the surface characterization and the degradation of PFPE segments, induced by irradiation beam, have been also reported. A large excess of PFPE with respect to the bulk composition was observed in all samples, and the angular dependence of the XPS signal demonstrated that the content of the fluorinated block segment increased by decreasing the sampling depth. The PFPE surface concentration was also decreased by increasing the PCL/PFPE ratio, but the surfaces of the samples were still dominated by PFPE segments for copolymers with a bulk PFPE composition lower than 10%. Moreover, copolymers with similar PCL/PFPE bulk ratios but with different PFPE block lengths, showed similar PFPE surface composition when the number‐average molecular weight (Mn) was 2000 and 3200 g mol?1, while that observed for copolymers containing PFPE block with Mn 900 g mol?1 was lower. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene was used as initiator in ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate (Sn(Oct)2) catalyst. The resulting poly(ε‐caprolactone) (PCL) macromonomer, with a central 2,5‐dibromo‐1,4‐diphenylene group, was used in combination with 1,4‐dibromo‐2,5‐dimethylbenzene for a Suzuki coupling in the presence of Pd(PPh3)4 as catalyst or using the system NiCl2/bpy/PPh3/Zn for a Yamamoto‐type polymerization. The poly(p‐phenylenes) (PPP) obtained, with PCL side chains, have solubility properties similar to those of the starting macromonomer, ie soluble in common organic solvents at room temperature. The new polymers were characterized by 1H and 13C NMR and UV spectroscopy and also by GPC measurements. The thermal behaviour of the precursor PCL macromonomer and the final poly(p‐phenylene)‐graft‐poly(ε‐caprolactone) copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry analyses and compared. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

10.
BACKGROUND: The technological development of poly(ε‐caprolactone) (PCL) is limited by its short useful lifespan, low modulus and high crystallinity. There are a few papers dealing with the crystallization behavior of carbon nanotube‐reinforced PCL composites. However, little work has been done on the crystallization kinetics of melt‐compounded PCL/multiwalled carbon nanotube (MWNT) nanocomposites. In this study, PCL/MWNT nanocomposites were successfully prepared by a simple melt‐compounding method, and their morphology and mechanical properties as well as their crystallization kinetics were studied. RESULTS: The MWNTs were observed to be homogeneously dispersed throughout the PCL matrix. The incorporation of a very small quantity of MWNTs significantly improved the storage modulus and loss modulus of the PCL/MWNT nanocomposites. The nonisothermal crystallization behavior of the PCL/MWNT nanocomposites exhibits strong dependencies of the degree of crystallinity (Xc), peak crystallization temperature (Tp), half‐time of crystallization (t1/2) and Avrami exponent (n) on the MWNT content and cooling rate. The MWNTs in the PCL/MWNT nanocomposites exhibit a higher nucleation activity. The crystallization activation energy (Ea) calculated with the Kissinger model is higher when a small amount of MWNTs is added, then gradually decreases; all the Ea values are higher than that of pure PCL. CONCLUSION: This paper reports for the first time the preparation of high‐performance biopolymer PCL/MWNT nanocomposites prepared by a simple melt‐compounding method. The results show that the PCL/MWNT nanocomposites can broaden the applications of PCL. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
The synthesis of multimetallic layered double hydroxides‐g ‐poly(?‐caprolactone) (LDHs‐g ‐PCL) was explored by in situ ring‐opening polymerization, considering layered clay's improvement on barrier properties in polymer films. LDHs/PCL nanocomposites were prepared by blending LDHs‐g ‐PCL and pure PCL via solution casting method. With incorporation of as low as 0.2 wt % of LDHs, LDHs/PCL nanocomposites exhibited excellent mechanical performance with tensile strength and elongation at break over 45 MPa and 837%, respectively. Compared with pure PCL, the O2 permeability of LDHs/PCL nanocomposites decreased by nearly 78% as LDHs content increased up to 1 wt %. It was revealed that the key parameter to improve the barrier properties is not only the high aspect ratio of layered clays but also the specific interactions that they develop in the polymers matrix. Due to the merits of its biodegradation and physical properties, LDHs/PCL nanocomposites could be potential materials applied in packaging industry widely. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45320.  相似文献   

12.
Poly(vinyl pyrrolidone‐co‐vinyl acetate)‐graft‐poly(ε‐caprolactone) (PVPVAc‐g‐PCL) was synthesized by radical copolymerization of N‐vinyl‐2‐pyrrolidone (VP)/vinyl acetate (VAc) comonomer and PCL macromonomer containing a reactive 2‐hydroxyethyl methacrylate terminal. The graft copolymer was designed in order to improve the interfacial adhesiveness of an immiscible blend system composed of cellulose acetate/poly(ε‐caprolactone) (CA/PCL). Adequate selections of preparation conditions led to successful acquisition of a series of graft copolymer samples with different values of molecular weight ( ), number of grafts (n), and segmental molecular weight of PVPVAc between adjacent grafts (Mn (between grafts)). Differential scanning calorimetry measurements gave a still immiscible indication for all of the ternary blends of CA/PCL/PVPVAc‐g‐PCL (72 : 18 : 10 in weight) that were prepared by using any of the copolymer samples as a compatibilizer. However, the incorporation enabled the CA/PCL (4 : 1) blend to be easily melt‐molded to give a visually homogeneous film sheet. This compatibilizing effect was found to be drastically enhanced when PVPVAc‐g‐PCLs of higher and Mn (between grafts) and lower n were employed. Scanning electron microscopy revealed that a uniform dispersion of the respective ingredients in the ternary blends was attainable with an assurance of the mixing scale of several hundreds of nanometers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

14.
An in situ–generated tetrafunctional samarium enolate from the reduction of 1,1,1,1‐tetra(2‐bromoisobutyryloxymethyl)methane with divalent samarium complexes [Sm(PPh2)2 and SmI2] in tetrahydrofuran has proven to initiate the ring‐opening polymerization of ?‐caprolactone (CL) giving star‐shaped aliphatic polyesters. The polymerization proceeded with quantitative conversions at room temperature in 2 h and exhibited good controllability of the molecular weight of polymer. The resulting four‐armed poly(?‐caprolactone) (PCL) was fractionated, and the dilute‐solution properties of the fractions were studied in tetrahydrofuran and toluene at 30°C. The Mark–Houwink relations for these solvents were [η] = 2.73 × 10?2Mw0.74 and [η] = 1.97 × 10?2Mw0.75, respectively. In addition, the unperturbed dimensions of the star‐shaped PCL systems were also evaluated, and a significant solvent effect was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 175–182, 2006  相似文献   

15.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The isothermal crystallization kinetics of biodegradable blends made of poly(lactic acid) (PLA) and poly(ε‐caprolactone) (PCL) compatibilized with two different low molecular weight block copolymers, that is, ε‐caprolactone/tetramethylene ether glycol and ε‐caprolactone/aliphatic polycarbonate (CB), was done. Blends were prepared by melt mixing in an extruder, while isothermal crystallization kinetics and morphologies were investigated by thermal (differential scanning calorimetry) and thermo‐optical (quantitative polarized light optical microscopy [qPLOM]) quantitative methods. Data were analyzed using the Avrami equation, revealing 2D and 3D growth and simultaneous heterogeneous nucleation. The presence of low molecular weight compatibilizers, that is, 2,000 g mol?1, accelerated the PLA crystallization rate by two to threefold when compared with neat PLA, with high degrees of crystallinity (40–43%) as confirmed by PLOM images. The activation energy (Ea) showed that PCL inhibits PLA crystallization; however, the addition of block copolymers used as compatibilizers of the blends reduced Ea values, increasing the chain mobility of PLA and thus increasing the crystallization rate. POLYM. ENG. SCI., 59:E161–E169, 2019. © 2018 Society of Plastics Engineers  相似文献   

17.
Biodegradable poly(ε‐caprolactone) (PCL)/silica nanocomposites containing 1–9 wt% silica nanoparticles were prepared by melt compounding in this work. The rheology, mechanical properties, and biodegradation were investigated. PCL/silica nanocomposite shows a high percolation threshold, which is between 7 and 9 wt%. Once percolation network structure forms, the long‐range motion of PCL chains is highly restrained. From the results of mechanical tests, the tensile strength, modulus, and yield strength of the nanocomposites are enhanced by the incorporation of silica nanoparticles. Moreover, it is interesting to find that the biodegradation rates have been enhanced obviously in the PCL/silica nanocomposites than in neat PCL, which may be of great use for the practical application of PCL. POLYM. COMPOS., 34:1620–1628, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
A well‐defined poly(ε‐caprolactone) (PCL) with terminal azido group was prepared. Grafting‐on reaction between the azido‐terminated PCL (N3? PCL) and ultrasonication‐assisted exfoliated graphene flakes (GF) was carried out to obtain PCL‐grafted‐GF (PCL‐g‐GF) which showed good dispersibility in a wide variety of organic solvents. Gel permeation chromatography, 1H NMR, IR, Raman, UV‐vis, and TEM measurements indicated that PCL macromolecules were covalently introduced on the surface of GF without disrupting the structure of GF. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41569.  相似文献   

19.
BACKGROUND: A series of novel biodegradable poly[(sebacic anhydride)‐co‐caprolactone] (PSA‐co‐PCL) triblock copolymers were prepared by melt condensation of acylated PSA and monofunctional hydroxyl‐terminated PCL prepolymers. These copolymers could be used as novel drug delivery carriers with expected good drug permeability due to the PCL component. The degradation rate and mode can be modulated by varying the ratio of monomers in the copolymer. RESULTS: The homopolymers and copolymers were characterized using 1H NMR, gel permeation chromatography and differential scanning calorimetry (DSC). 1H NMR confirmed the formation of triblock copolymers that comprise a middle PSA block and two side PCL blocks. DSC revealed that the melting temperature and degree of crystallinity for both sebacic anhydride (SA) and caprolactone (CL) components are strongly composition dependent, implying the hindrance effect of the two components on the crystallinity. In vitro degradation experiments showed that the mass loss is significantly accelerated for samples in base buffer solution and more rapid for the copolymers with a higher SA content. Scanning electron microscopy revealed that for SA‐rich copolymer, PSA(80 wt%)‐co‐PCL, surface erosion dominated the degradation mode of the sample. In contrast, for CL‐rich copolymer, PSA(20 wt%)‐co‐PCL, a micropore structure developed at a degradation time of 155 h along the edges of the sample, owing to the hydrolysis of SA. CONCLUSION: It is concluded that the rate and mode of degradation of these copolymers can be tuned by varying the composition of the copolymers. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
This study examined the dynamic mechanical properties of sisal fiber reinforced unsaturated polyester (UP) toughened epoxy nanocomposites. The chemical structures changes in Epoxy, UP and UP toughened epoxy (Epoxy/UP) systems were characterized by Proton Nuclear magnetic resonance (1HNMR) spectroscopy. The morphological alterations of the nanocomposites were analyzed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The untreated, chemically treated fibers, nanoclays, and the fiber reinforced Epoxy/UP nanocomposites were confirmed by FTIR spectrometer. The obtained mechanical results showed that alkali‐silane treated fibers improve the tensile strength (96%) and flexural strength (60%) of the Epoxy/UP nanocomposite than that of Epoxy/UP blend due to the strong interfacial bonding between the sisal fiber and matrix. The fracture toughness (KIC) and fracture energy (GIC) of treated sisal fiber reinforced DGEBA/UP/C30B nanocomposites found to be higher than that of untreated sisal fiber nanocomposites. The dynamic mechanical analysis (DMA) reveals that the fiber reinforced Epoxy/UP nanocomposites contains 30 wt% treated fiber and 1 wt% nanoclays, exhibits the highest storage modulus and better glass transition temperature (Tg) among the other kind of systems. The surface morphology of the fibers, fractured surface of the resins and composites were confirmed by scanning electron microscope (SEM). POLYM. COMPOS., 37:2832–2846, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号