首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A study is presented on the morphological effects caused by the nanoclay organic modifier and the nanoclay concentration. This was made under previously determined compatibility conditions of heterophasic polypropylene copolymers (PP‐EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites. The nanocomposites were prepared using the fluidity of the EVA phase to disperse the nanoclay platelets. Therefore, no additional compatibilizer was used to achieve the clay dispersion. Two organoclays were used with different characteristics and polarity of the substituent groups. Transmission electron microscopy and X‐ray diffraction results first indicated that two hydrogenated tallow modifiers are more effective than one to enhance nanoclay exfoliation. Thermogravimetric studies indicated a low probability of thermal degradation of the nanoclay modifiers and as a consequence of their effect on the layer–layer exfoliation. Molecular simulations were made with the purpose to study additional factors affecting exfoliation. The introduction of nanoclay, within the compatibility conditions of the PP‐EP/EVA system, was also studied. It was determined that the system preserved its original morphology and that the silicate layers were hosted by the EVA domains. The crystallization characteristics of the PP‐EP/EVA mixtures indicated a gradual evolution of the overall crystalline structures depending on the EVA content. In the case of the ternary nanocomposites PP‐EP/EVA/nanoclay, the β crystalline structure was partially formed, although it decreased with increasing nanoclay content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The effects of melt state compounding of ethylene‐butyl acrylate‐maleic anhydride (E‐BA‐MAH) terpolymer and/or three types of organoclays (Cloisite® 15A, 25A, and 30B) on thermal and mechanical properties and morphology of polyamide‐6 are investigated. E‐BA‐MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young's modulus and elongation at break, but the addition of E‐BA‐MAH had the opposite effect. XRD patterns showed that the interlayer spacing for the organoclays Cloisite 25A and Cloisite 30B increased in both polyamide‐6/organoclay binary nanocomposites and in polyamide‐6/organoclay/impact modifier ternary systems. TEM analysis showed that exfoliated‐intercalated nanocomposites were formed. The crystallinities of polyamide‐6/organoclay nanocomposites were in general lower than that of polyamide‐6 (except for Cloisite 15A). In ternary nanocomposites, crystallinities generally were lower than those of polyamide‐6/organoclay nanocomposites. Cloisite 15A containing ternary nanocomposites had higher tensile and impact strengths and Young's modulus than the ternary nanocomposites prepared with Cloisite 25A and Cloisite 30B, owing to its surface hydrophobicity and compatibility with the impact modifier. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

3.

This work shows the preparation of ethylene vinyl acetate copolymer/banana starch/Cloisite 20A organoclay (EVA/starch/C20A) nanocomposites by melt processing. Wide angle X-ray diffraction (WAXD), field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry and thermogravimetric analysis were used to characterize the obtained nanocomposites. Mechanical properties were also determined. In addition, the performance of the nanocomposite films under composting was preliminarily studied; it was conducted using the soil burial test method. Despite knowing that the starch is difficult to process by extrusion, nanocomposite films with high homogeneity were obtained. In this case, C20A organoclay acts as an effective surfactant to make the starch natural polymer compatible with the EVA synthetic polymer. The good compatibility between EVA, starch and C20A clay was also deduced by the formation of intercalated and intercalated-exfoliated structures determined by WAXD and FE-SEM. Physical evidence of the damage in EVA/starch/C20A nanocomposite films after the composting test was observed. It is worth noting that despite the absence of starch, the EVA/C20A nanocomposite film, used as a control, also showed surface damage. This behavior is related to the organic modifier linked to clay C20A, which contains molecules derived from fatty acids that can be used as a food source for microorganisms.

  相似文献   

4.
A comparative study of the development of nitrile rubber (NBR) based nanocomposites was performed; two organomontmorillonites (Cloisite 15A and Cloisite 30B) and two procedures for clay dispersion (melt blending and solution intercalation) were used. The nanocomposites were cured with a system based on dicumyl peroxide in the presence of m‐phenylenebismaleimide as a coagent for curing. The dispersion of the organoclay inside the NBR matrix was investigated with transmission electron microscopy and X‐ray diffraction. All the cured systems displayed a combination of intercalated, partially exfoliated clay platelets and confined, deintercalated clay; the degree of dispersion depended on the amount of clay, the type of intercalant, and the intercalation procedure. The highest amount of intercalated/exfoliated clay was obtained with a previous dispersion of the clay (Cloisite 30B) in an NBR solution. All the nanocomposites presented outstanding tensile strength and creep response, and this indicated a reinforcing effect of the layered silicates. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The effect of vinyl acetat (VA) on the morphological, thermal stability, and mechanical properties of heterophasic polypropylene–(ethylene‐propylene) copolymer (PP–EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites was studied. Tailored organoclay C20A was selected to enhance the exfoliation of the clay platelets. Depending on the VA content, there were two morphological organoclay populations in the systems. Both populations were directly observed by scanning transmission electron microscopy and measured by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The content of VA in EVA originated spherical and elongated morphologies in the resultant nanocomposites. High‐VA content led to a better intercalation of the organoclay platelets. Measurement of thermal properties suggested that higher VA decreases thermal stability in samples both with and without organoclay, although nanocomposites had higher thermal stability than samples without clay. The storage modulus increased both with nanoclay and VA content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The vulcanization behavior and mechanical properties of clay/fluoroelastomer nanocomposites produced by melt‐mixing of Dyneon FPO 3741 (a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene) with 10 phr of unmodified montmorillonite (CloisiteNA) or di(hydrogenated tallow‐alkyl) dimethyl ammonium‐modified montmorillonites (Cloisite15A and Cloisite20A) were studied. The properties of clay/FKM nanocomposites were compared with composites prepared using 10 and 30 phr of carbon black. The effects of clay surfactant and surfactant concentration on the vulcanization behavior, mechanical, and dynamical properties of peroxide cured composites were studied. XRD results of cured composites showed a decrease in d‐spacing and indicated deintercalation of the clays after the vulcanization process. It was also found that organoclays retard the FKM peroxide vulcanization process. Significantly, higher maximum torque on vulcanization was obtained with organoclays versus unmodified clay and carbon black. Although the morphologies of organoclay/FKM nanocomposites studied by XRD and TEM suggest similar intercalated/exfoliated structures, the organoclay with the lowest concentration of surfactant (95 meq/100 g clay) resulted in the highest increase in torque, modulus, hardness, and tear strength in the clay/FKM nanocomposites. It was also found that organoclays can increase both the hydrodynamic reinforcement and hysteresis loss of FKM nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Exfoliated and intercalated polyurethane (PU) nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. Wide‐angle X‐ray diffraction and transmission electron microscopy confirmed an exfoliated structure for clay C30B and an intercalated structure for C20A in polyol and PU. The realization of exfoliated state for clay C30B in polyol during the mixing stage can provide an effective approach for controlling the exfoliation degrees by adjusting the content of intercalated and exfoliated organoclay C20A and C30B before polymerization. The effect of exfoliation degree on the mechanical and viscoelastic properties of PU was investigated. The addition of organoclay improved the tensile strength, modulus and elongation, but the hysteresis loss ratio and relaxation rate increased, and the relaxation time distribution became broad. The effect of organoclay on PU properties varied with the hard segment content. By increasing the exfoliation degree, the tensile strength and modulus increased, whereas the elongation decreased. The exfoliated PU nanocomposite had a lower relaxation rate and hysteresis loss ratio than the intercalated PU. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
This article describes the effect of the presence of organic peroxides on the morphology and properties of ethylene vinyl acetate copolymer (EVA)/Cloisite 15A nanocomposites. The results show that the presence of dicumyl peroxide (DCP) or dibenzoyl peroxide (DBP) during the preparation of EVA/Cloisite 15A clay nanocomposites gives rise to intercalated, exfoliated, or mixed morphologies, which are not normally observed for samples prepared in the absence of organic peroxides. In the absence of clay, both DCP and DBP initiate de‐acetylation and chain scission of EVA chains, but the influence of DBP is more pronounced. The presence of clay inhibits the initiation of EVA degradation by DCP free radicals, which can be observed in the higher tensile strength values for DCP treated samples, as well as in the de‐acetylation step in the TGA curves. DBP has a more significant influence on the polymer degradation, and this gives rise to reduced thermal stability and mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Poly(ether sulfone) (PES)‐toughened epoxy clay ternary nanocomposites were prepared by melt blending of PES with diglycidyl ether of bisphenol A epoxy resin along with Cloisite 30B followed by curing with 4,4′‐diaminodiphenylsulfone. The effect of organoclay and thermoplastic on the fracture toughness, permeability, viscoelasticity and thermomechanical properties of the epoxy system was investigated. A significant improvement in fracture toughness and modulus with reduced coefficient of thermal expansion (CTE) and gas permeability were observed with the addition of thermoplastic and clay to the epoxy system. Scanning electron microscopy of fracture‐failed specimens revealed crack path deflection and ductile fracture without phase separation. Oxygen gas permeability was reduced by 57% and fracture toughness was increased by 66% with the incorporation of 5 phr clay and 5 phr thermoplastic into the epoxy system. Optical transparency was retained even with high clay content. The addition of thermoplastic and organoclay to the epoxy system had a synergic effect on fracture toughness, modulus, CTE and barrier properties. Planetary ball‐milled samples gave exfoliated morphology with better thermomechanical properties compared to ultrasonicated samples with intercalated morphology. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
PP/organoclay nanocomposites were prepared using different processing aids (EMCA and PPG), and their effects on the thermal and mechanical properties were evaluated by WAXD, TEM, SEM, DSC, and mechanical tests. This study helps to clarify the effects of processing aids on the organoclay surface and on the intercalation and exfoliation processes. Nanocomposites with elongated intercalated and partially exfoliated structures were obtained, mainly when C‐15A was used. The results for the mechanical properties showed that the processing aids increased the impact strength significantly (up to three times that of neat PP) but reduced the flexural modulus of PP nanocomposites. PPG, which is polar promoted wetting MMT surface, thus increasing its interlayer distance, mainly for PP/C‐20A nanocomposites. However, it reduced the interfacial adhesion between the clay and the matrix. Nanocomposites impact strength was improved, especially when the C‐15A organoclay was used, while were achieved better results with the C‐20A organoclay when EMCA was used. The larger the amount of processing aid added, the higher the impact strength, but the lower the flexural modulus of the nanocomposites. PPG caused debonding of the clay particles and increased the number of microvoids, generating more mechanisms to aid in the energy dissipation of the systems. EMCA promoted debonding of clay particles with the formation of fibrils, indicating stronger interactions between the clay and matrix. A slight nucleation effect for PP crystallization was observed, mainly when EMCA was used. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Localization of organoclays between two phases of polyamide 6 (PA6)/maleic anhydride grafted ethylene-butene copolymer (EB-g-MAH) blends, prepared via melt mixing, was investigated as a function of organoclay type. Cloisite 30B, Cloisite 20A and Cloisite 15A were used as different types of organoclay. The influence of different blend compositions and clay contents were also studied. Contact angle measurements have been applied to determine surface tension of components and then to calculate the wetting coefficient which is a useful parameter for prediction of the organoclay location. In general, all organoclays were found to locate in the more hydrophilic polyamide 6 phase. However, for Cloisite 20A and Cloisite 15A transmission electron microscopy (TEM) observations revealed some organoclay layers in the EB-g-MAH phase. Phase structure and nanocomposite morphology were evaluated using scanning and transmission electron microscopy and small angle X-ray scattering (SAXS). Results indicated the formation of an exfoliated or an intercalated morphology in different samples. Dynamic-mechanical thermal analysis and thermal gravimetric analysis were used as an experimental probe to confirm the location of nanoclays predicted via wetting coefficient. The shifting of glass transition temperature for PA6 phase confirmed that nanoclays are more distributed in this phase.  相似文献   

12.
The effect of processing conditions on the morphology of heterophasic PP–EP/EVA/organoclay ternary nanocomposites was examined. The nanocomposites were prepared in a co-rotating twin screw extruder with different screw configurations and incorporation methods. Three different sizes of EVA granules were used. The results obtained by X-ray scattering (WAXD) and electronic microscopy (TEM) showed an increase in d spacing value of the clay associated with the polar interactions between the vinyl acetate of EVA and the surface of the nanoclays. In addition, some chains of the non-polar copolymer PP–EP may have become intercalated into the clay galleries as a result of polymer diffusion induced by shear stress during melt mixing. An increase in surface area of EVA granules resulted in a more homogenous clay dispersion and intercalation. The morphologic changes resulted in an increase in heat distortion temperature (HDT) and flexural modulus of the ternary nanocomposites.  相似文献   

13.
In this study, our goal is to obtain lower density of ethylene‐vinyl acetate copolymer (EVA)/ethylene‐1‐butene copolymer (EtBC) foams without sacrificing mechanical properties. For this purpose EVA/EtBC/organoclay (Cloisite 15A, Closite 30B) nanocomposite foams were prepared. To investigate the effect of compatibilizer on the dispersion state of organoclay in cellular foam structure and mechanical properties of the EVA/EtBC/organoclay foams composites were prepared with and without maleic anhydride grafted EtBC (EtBC‐g‐MAH). The dispersion of organoclay in EVA/EtBC/organocaly foams was investigated by X‐ray diffraction and transmission electron microscopy. The EVA/EtBC nanocomposite foamswith the compatibilzer, especially EVA/EtBC/Cloisite 15A/EtBC‐g‐MAH foams displayed more uniform dispersion of organoclay than EVA/EtBC nanocomposite foams without the compatibilzer. As a result, EVA/EtBC/Cloisite 15A/EtBC‐g‐MAH foams have the smallest average cell size and highest 100% tensile modulus followed by EVA/EtBC/Cloisite 30B/EtBC‐g‐MAH foams. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3879–3885, 2007  相似文献   

14.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A novel method of developing cocontinuous morphology in 75/25 and 80/20 w/w polypropylene/high density polyethylene (PP/HDPE) blends in the presence of small amount (0.5 phr) of organoclay has been reported. SEM study indicated a reduction in average domain sizes (D) of disperse HDPE when PP, HDPE, and the organoclay were melt‐blended simultaneously at 200°C. However, when the two‐sequential heating protocol was employed, (that is, the organoclay was first intercalated by HDPE chains at 150°C, followed by melt blending of PP at 200°C), very interestingly a cocontinuous morphology was found even for very asymmetric blend compositions. WAXD study revealed the intercalation of both PP and HDPE chains inside the clay galleries, when PP/HDPE and clay were melt‐mixed together at 200°C. However, when the two‐sequential heating protocol was used the organoclay platelets were selectively intercalated by the HDPE chains. Addition of SEPS in the blend decreased the D of HDPE domains in both the blending methods. Thus, the observed cocontinuous morphology in asymmetric composition of PP/HDPE blend in presence of clay is because of the barrier effect of the clay platelets in the HDPE phase that restrict the phase inversion into the domain/matrix morphology. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Polypropylene (PP)‐ethylene vinyl acetate (EVA)/clay nanocomposites were prepared via reactive blending using dicumyl peroxide (DCP) as an initiator with the goal of enhancing the interaction between both phases and modified nanoclay. The effect of the reactive blending and clay incorporation strategies (direct and masterbatch) on the blend and nanostructure morphology, and chain mobility of nanocomposites were studied. The chemical analysis showed the chemical bonding of PP‐EVA, which helped to enhance the interaction in the nanocomposites. The nanocomposites obtained from the direct clay strategy presented a co‐continuous morphology of bordering intercalated and agglomerated nanoclay sheets, while the nanocomposites obtained from the masterbatch strategy showed that blend morphology change from droplet to co‐continuous with the increase of EVA concentration, with intercalated/exfoliated nanoclay sheets located in the EVA domains and at the interface. The dynamic mechanical and creep‐recovery results showed different behavior for the both strategies in terms of chain mobility and relaxation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40897.  相似文献   

17.
Highly exfoliated and intercalated silicone rubber (SR) nanocomposites based on natural montmorillonite (Cloisite Na+) and organically modified montmorillonite (Cloisite 30B and Cloisite 20A) were successfully prepared by melt‐mixing technique. Dispersion of the nanoclays in the rubber nanocomposites was subsequently investigated. As indicated by the X‐ray diffraction (XRD) analysis, intercalation, and exfoliation of the clay particles in the nanocomposites was achieved at less than 8 parts per hundred (phr) rubber by weight, irrespective of the initial interlayer spacing of the nanoclay particles. Both Cloisite Na+ and Cloisite 30B were spontaneously transformed into exfoliated microstructures during the vulcanisation stage. Overall, the use of the nanoclays in silicone rubber improved the Young's modulus, tensile strength, and elongation at break by more than 50% as compared with the control rubber. In addition, this work provided a fresh insight into the way intercalated and exfoliated morphologies affect mechanical properties of silicone rubber nanocomposites. It was shown that the exfoliated Cloisite Na+ yielded outstanding mechanical properties with low hysteresis at the same loading of the exfoliated Cloisite 30B and intercalated Cloisite 20A organoclays. As expected, the formation of crosslinks affected the mechanical properties of the rubber vulcanizate significantly. POLYM. ENG. SCI., 53:2603–2614, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
Heat ageing and thermal stability of a silicone rubber (SR) filled with montmorillonite clay (MMT) was investigated. Three types of rubber nanocomposites were prepared with highly exfoliated Cloisite 30B (SR/C30B), intercalated/exfoliated Cloisite Na+ (SR/Na+MMT), and highly intercalated Cloisite 20A (SR/C20A). This study showed that the SR/C30B nanocomposite exhibited excellent heat resistance in comparison to the other two nanocomposites and neat SR as revealed by higher retention strength. The thermal stability of the rubber in air was strongly dependent on the clay morphology and increased in the following order: highly intercalated/exfoliated SR/Na+MMT < highly intercalated SR/C20A < highly exfoliated SR/C30B. The thermogravimetric analyses of the SR/C30B nanocomposite showed a substantial increase in the final residue in comparison with the neat SR. This indicated a major improvement in the thermal stability of the rubber containing the exfoliated clay, which was also supported by the higher activation energy of decomposition measured for the nanocomposite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41061.  相似文献   

19.
Attempts were made to trace the effect of organoclay (OC) on the rheological and mechanical behaviors of the low density polyethylene (LDPE)/ethylene‐vinyl acetate (EVA) blends. To do this effectively, in addition to LDPE/EVA/OC system, pure LDPE and LDPE/EVA blends were also examined as model systems. The rheological behavior was determined by the capillary rheometer. Morphological characterization was also carried out using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and theoretical approach based on interfacial energies. Shear viscosity, tensile strength and elastic modulus of LDPE/EVA were found to decrease by increasing the EVA content, while for LDPE/EVA/OC ternary nanocomposites, such properties showed an increase by increasing the content of EVA. Such behavior was explained by the morphological characteristic of the system in which OC was mainly intercalated/exfoliated in the EVA phase. This morphological characteristic was corroborated by the XRD, TEM and interfacial energies data. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

20.
Ester‐based thermoplastic polyurethane (TPU) nanocomposites were prepared by melt blending at 190°C, using 3 wt% Cloisite 10A (organically modified montmorillonite clay) as the nanoscale reinforcement [TPU(C10A)]. The nanocomposites were subsequently melt‐blended with polypropylene (PP) using maleic anhydride–grafted polypropylene (MA‐g‐PP) as a compatibilizer [in the ratio of 70/30‐TPU/PP, 70/25/5‐TPU/PP/MA‐g‐PP, 70/25/5‐TPU (C10A)/PP/MA‐g‐PP]. Besides giving substantial increase in modulus, tensile strength, and other properties, organoclay reinforcement functions as a surface modifier for TPU hard segment resulting in improved dispersion. The morphology and other characteristics of the nanocomposite blends were investigated in terms of X‐ray diffraction, fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, tensile properties, scanning electron microscopy, and atomic force microscopy. The results indicate that the ester‐TPU(C10A)/PP/MA‐g‐PP exhibited better dispersion than other blend systems; abrasion resistance and water absorption resistance were also better for this system. POLYM. ENG. SCI., 50:1878–1886, 2010. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号