首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):22647-22663
Calcium phosphates (apatites) are considered as a research frontier for bone regeneration applications by virtue of similarity to the mineral constituent of bone, suitable biocompatibility and remarkable osteogenesis ability. In this regard, the biodegradability and mechanical properties of monophasic apatites, typically hydroxyapatite (HA) and tricalcium phosphate (TCP), are imperfect and do not fulfill some requirements. To overcome these drawbacks, 3D porous HA/TCP composite scaffolds prepared by conventional and more recently, 3D printing techniques have shown to be promising since their bioperformance is adjustable by the HA/TCP ratio and pores. Despite the publication of several reviews on either 3D porous scaffolds or biphasic calcium phosphates (BCPs), no review paper has to our knowledge focused on 3D porous BCP scaffolds. This paper comprehensively reviews the production methods, properties, applications and modification approaches of 3D porous HA/TCP composite scaffolds for the first time. In addition, new insights are introduced towards developing HA/TCP scaffolds with more impressive bioperformance for further tissue engineering applications, including those with different interior and exterior frameworks, patient-specific specifications and drugs (or other biological factors) loading.  相似文献   

2.
《Ceramics International》2019,45(12):14608-14613
We investigated the bioactivity and cytocompatibility of 45S5 bioactive glass (BG) based scaffolds coated with a composite layer formed by gelatin and manganese doped mesoporous bioactive glass nanoparticles (Mn-MBGNs). The scaffolds were prepared using the foam replica method, and they were further coated with Mn-MBGNs/gelatin via dip coating. The synthesized scaffolds were characterized in relation to morphology, porosity, mechanical stability, bioactivity and cell biology behavior using osteoblast-like (MG-63) cells. The scaffolds were highly porous with interconnected porosity, and a suitable pore structure was maintained even after the Mn-MBGNs/gelatin coating. Energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn-MBGNs in the coatings. Moreover, the presence of gelatin was confirmed by Fourier transform infrared spectroscopy (FTIR). The coated scaffolds exhibited in-vitro bioactivity in simulated body fluid comparable to that of uncoated BG scaffolds. Finally, Mn-MBGNs/gelatin coated scaffolds were shown to be non-cytotoxic to MG-63 cells. Hence, the results presented here confirm that the novel Mn containing scaffolds can be considered in the field of biologically active ion releasing scaffolds for bone tissue engineering applications.  相似文献   

3.
Novel biomineralized hydrogels composed of hyaluronic acid (HA) and vinyl phosphonic acid (VPAc) were designed with the aim of developing a biomimetic hydrogel system to improve bone regeneration by local delivery of a protein drug including bone morphogenetic proteins. We synthesized crosslinked hydrogels composed of methacrylated HA and poly(VPAc) [P(VPAc)], which serves as a binding site for calcium ions during the mineralization process. The HA/P(VPAc) hydrogels were biomineralized by a urea‐mediation method to create functional polymer hydrogels that can deliver the protein drug and mimic the bone extracellular matrix. The water content of the hydrogels was influenced by the HA/P(VPAc) composition, crosslinking density, biomineralization, and ionic strength of the swelling media. All HA/P(VPAc) hydrogels maintained more than 84% water content. Enzymatic degradation of HA/P(VPAc) hydrogels was dependent on the concentration of hyaluronidase and the crosslinking density of the polymer network within the hydrogel. In addition, the release behavior of bovine serum albumin from the HA/PVPAc hydrogels was mainly influenced by the drug loading content, water content, and biomineralization of the hydrogels. In a cytotoxicity study, the HA/P(VPAc) and biomineralized HA/P(VPAc) hydrogels did not significantly affect cell viability. These results suggest that biomineralized HA/P(VPAc) hydrogels can be tailored to create a biomimetic hydrogel system that promotes bone tissue repair and regeneration by local delivery of protein drugs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41194.  相似文献   

4.
Bioactive and biocompatible porous scaffold materials with adjustable pore structures and drug delivery capability are one of the key elements in bone tissue engineering. In this work, bioactive and biocompatible sodium alginate (SA)/hydroxyapatite (HAP) macroporous scaffolds are facilely and effectively fabricated based on 3D printing of the pre‐crosslinked SA/HAP hydrogels followed by further crosslinking to improve the mechanical properties of scaffolds. The pore structures and porosity (>80%) of the porous scaffolds can be readily tailored by varying the formation conditions. Furthermore, the in vitro biomineralization tests show that the bioactivity of the porous scaffolds is effectively enhanced by the addition of HAP nanoparticles into the scaffold matrix. Furthermore, the anti‐inflammatory drug curcumin is loaded into the porous scaffolds and the in vitro release study shows the sustainable drug release function of the porous scaffolds. Moreover, mouse bone mesenchymal stem cells (mBMSCs) are cultured on the porous scaffolds, and the results of the in vitro biocompatibility experiment show that the mBMSCs can be adhered well on the porous scaffolds. All of the results suggest that the bioactive and biocompatible SA/HAP porous scaffolds have great application potential in bone tissue engineering.  相似文献   

5.
利用冷冻干燥法制备出用于骨和软骨组织工程的壳聚糖-明胶/溶胶凝胶生物玻璃(CS-Gel/SGBG)仿生型复合多孔支架,并进行了孔隙率的测定和显微形貌的观察;探讨了各组分不同用量对CS-Gel/SGBG复合支架显微结构的影响以及复合支架在模拟生理体液中的仿生矿化性能。研究表明,通过调节各组分的不同用量,可以制备出三维连通的复合多孔支架,且孔隙率达到90%以上;在模拟生理体液中浸泡后发现CS-Gel/SGBG支架表面有大量结晶态类骨碳酸羟基磷灰石生成,表明复合支架有良好的生物矿化性能。  相似文献   

6.
Ultralong hydroxyapatite (HAp) micro/nanoribbons were successfully synthesized by a simple hydrothermal method without using any organic solvents and templates. The ultralong HAp micro/nanoribbons were up to several hundred micrometers in length and 100–400?nm in width. The growth process and mechanism of this micro/nanoribbons were also analyzed in this study. Moreover, the ultralong HAp micro/nanoribbons were used as reinforcement in collagen scaffolds and the HAp/collagen composite scaffolds were fabricated by freeze-drying process without cross-linking. The morphological results demonstrated homogeneous interconnected porous structure in 20?wt% and 35?wt% HAp reinforced scaffolds. The compressive modulus of the 35?wt% HAp/collagen composite was about 6 times that of the pure collagen scaffold. The ultralong HAp reinforced collagen scaffold possesses a porous structure, good flexibility as well as elasticity, and thus it is promising for used as bone repair material.  相似文献   

7.
Naturally derived Hydroxyapatite (HAp) from fish scale is finding wide applications in the development of bone scaffold to promote bone regeneration. But porous HAp scaffold is fragile in nature making it unsuitable for bone repair or replacement applications. Thus, it is essential to improve the mechanical property of HAp scaffolds while retaining the interconnected porous structure for tissue ingrowth in vivo. In this study solvent casting particulate leaching technique is used to develop novel Puntius conchonius fish scale derived HAp bone scaffold by varying the wt.% of the HAp from 60 to 80% in PMMA matrix. Physico-chemical, mechanical, structural and bioactive properties of the developed scaffolds are investigated. The obtained results indicate that HAp-PMMA scaffold at 70?wt % HAp loading shows optimal properties with 7.26?±?0.45?MPa compressive strength, 75?±?0.8% porosity, 8.0?±?0.68% degradation and 190?±?11% water absorption. The obtained results of the scaffold can meet the physiological demands to guide bone regeneration. Moreover, in vitro bioactivity analysis also confirms the formation of bone like apatite in the scaffold surface after 28 days of SBF immersion. Thus, the developed scaffold has the potential to be effectively used in bone tissue engineering applications.  相似文献   

8.
Three dimensional (3D) biodegradable porous scaffolds play a crucial role in bone tissue repair. In this study, four types of 3D polymer/hydroxyapatite (HAp) composite scaffolds were prepared by freeze drying technique in order to mimic the organic/inorganic nature of the bone. Chitosan (CH) and poly(lactic acid‐co‐glycolic acid) (PLGA) were used as the polymeric part and HAp as the inorganic component. Properties of the resultant scaffolds, such as morphology, porosity, degradation, water uptake, mechanical and thermal stabilities were examined. 3D scaffolds having interconnected macroporous structure and 77–89% porosity were produced. The pore diameters were in the range of 6 and 200 µm. PLGA and HAp containing scaffolds had the highest compressive modulus. PLGA maintained the strength by decreasing water uptake but increased the degradation rate. Scaffolds seeded with SaOs‐2 osteoblast cells showed that all scaffolds were capable of encouraging cell adhesion and proliferation. The presence of HAp particles caused an increase in cell number on CH‐HAp scaffolds compared to CH scaffolds, while cell number decreased when PLGA was incorporated in the structure. CH‐PLGA scaffolds showed highest cell number on days 7 and 14 compared to others. Based on the properties such as interconnected porosity, high mechanical strength, and in vitro cell proliferation, blend scaffolds have the potential to be applied in hard tissue treatments. POLYM. COMPOS., 36:1917–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
An excellent bioactive scaffold material which could induce and promote new bone formation is essential in the bone repair field. In this study, the bioactive material hydroxyapatite (HA) and the bone morphogenetic protein‐2 (BMP‐2) were added to poly‐l‐lactic acid (PLLA) using the electrospinning method. Scanning electron microscopy investigations performed on four different fiber scaffolds, PLLA, PLLA/HA, PLLA/BMP‐2 and PLLA/HA/BMP‐2, revealed that the fibers of all scaffolds are closely interwoven, and the presence of large interconnected voids between the fibers, resulting in a three‐dimensional porous network structure that was similar to the structure of the extracellular matrix of healthy bones. In the MG63 cell culture growth experiments, the composite scaffold material PLLA/HA/BMP‐2 showed a higher bioactivity than the other three scaffold materials. The four scaffold materials were implanted in rabbits’ tibia for 30 and 90 days. The results of the animal experiments indicate that the capability of the PLLA/HA/BMP‐2 composite to induce and promote bone tissue formation was better compared with PLLA/HA or PLLA/BMP‐2, suggesting that PLLA combined with HA/BMP‐2 is a promising material for bone tissue repair. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42249.  相似文献   

10.
Continuous carbon fibre (CF) reinforced HA (CF/HA) composite scaffolds were prepared using a self-designed and manufactured 3D printer. The optimised design of nozzle structure and the tailored viscoelastic property of HA inks ensured compound extrusion of monofilament and multifilament CF with HA rod. The composite scaffolds designed using the CAD programme and sintered via a suitable process exhibited a hierarchical macro/microporous structure and contained approximately 50% HA and 50% β-TCP. The continuous CF synchronously enhanced the strength and toughness of the scaffolds. The compressive strengths of 1CF/HA and 5CF/HA were 11.4 ± 1.7 MPa and 16.3 ± 2.6 MPa, respectively, which were approximately double and triple compared with that of HA scaffolds. The fracture toughness of 1CF/HA was approximately double that of HA scaffolds and close to that of cortical bone. In vitro and in vivo studies demonstrated that 1CF/HA also had apatite formation capability and adequate bone regeneration capacity.  相似文献   

11.
To achieve novel polymer/bioceramic composite scaffolds for use in materials for bone tissue engineering, we prepared organic/inorganic hybrid scaffolds composed of biodegradable poly(ε‐caprolactone) (PCL) and hydroxyapatite (HA), which has excellent biocompatibility with hard tissues and high osteoconductivity and bioactivity. To improve the interactions between the scaffolds and osteoblasts, we focused on surface‐engineered, porous HA/PCL scaffolds that had HA molecules on their surfaces and within them because of the biochemical affinity between the biotin and avidin molecules. The surface modification of HA nanocrystals was performed with two different methods. Using Fourier transform infrared, X‐ray diffraction, and thermogravimetric analysis measurements, we found that surface‐modified HA nanocrystals prepared with an ethylene glycol mediated coupling method showed a higher degree of coupling (%) than those prepared via a direct coupling method. HA/PCL hybrid scaffolds with a well‐controlled porous architecture were fabricated with a gas‐blowing/particle‐leaching process. All HA/PCL scaffold samples exhibited approximately 80–85% porosity. As the HA concentration within the HA/PCL scaffolds increased, the porosity of the HA/PCL scaffolds gradually decreased. The homogeneous immobilization of biotin‐conjugated HA nanocrystals on a three‐dimensional, porous scaffold was observed with confocal microscopy. According to an in vitro cytotoxicity study, all scaffold samples exhibited greater than 80% cell viability, regardless of the HA/PCL composition or preparation method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
In this study, a scaffold was designed to be used in bone tissue repair and the effect of glutaraldehyde (GA) concentration as crosslinking agent was investigated. To mimic the mineral and organic component of natural bone, hydroxyapatite (HAp) and gelatin (GEL) were used as the main components of this composite. Nanopowders of HAp were synthesized and also used together with GEL to engineer a three‐dimensional nanocomposite scaffold. The results show that GEL/HAp nanocomposite is porous with three‐dimensional interconnected structure, pore sizes ranging from 300 to 500 μm, and about 85% porosity. In addition, increasing GA concentration provokes the enhancement of compressive strength until 1 w/v% GA solution followed by a reduction to 2.5%, whereas it causes work fracture to decrease. It was concluded that optimum concentration for crosslinking GEL matrix for this purpose is 1 w/v% GA solution. A specific combination of commonly used techniques applied to engineer a scaffold with almost ideal properties intended for the bone tissue engineering is introduced. In addition, scaffolds that are prepared via this compound process has the potential to be used in the solid free form applications and so being formed in any dimension and geometry relevant to the defect size and shape. POLYM. COMPOS., 31:2112–2120, 2010. © 2010 Society of Plastics Engineers  相似文献   

13.
A series of novel zinc oxide (ZnO) containing bioactive glass compositions in SiO2-Na2O-CaO-P2O5 system and composite with hydroxyapatite (HAp) nano-particles were developed and applied as coating on Ti-6Al-4V substrates. The bioactive glasses and their composites were also processed to yield dense scaffolds, porous scaffolds and porous bone filler materials. The coating materials and the coatings were characterized and evaluated by different in vitro techniques to establish their superior mechanical properties. The cytotoxicity test of the coating material, porous and dense scaffolds and coated specimens showed non-cytotoxicity, biocompatibility and promising in vitro bioactivity for all tested samples. The dissolution behaviour studies of the bioactive glasses and the composites in simulated body fluid showed promising in vitro release pattern and bioactivity for all tested samples. Addition of nanosized HAp improves mechanical properties of the bioactive glass coating without affecting the in vitro bioactivity.  相似文献   

14.
介孔生物玻璃 (Mesoporous Bioglass, MBG) 支架由于高的比表面积和介孔结构而 具有优异的成骨活性、生物降解性以及局部药物递送功能。MBG 支架可提供细胞增殖/生长、 细胞外基质沉积、营养物质获取的场所,引导新骨生长而修复骨缺损。然而,纯 MBG 支架的 力学强度低、脆性大而使其应用于骨缺损修复受到限制。将 MBG 结合生物高分子或其他生物 陶瓷制备 MBG 复合支架成为解决上述问题的有效策略之一。本文将基于 MBG 复合支架的骨组 织修复应用背景,简单介绍 MBG 复合支架的制备方法,系统总结 MBG 复合支架在骨组织修复 领域中的应用,最后对 MBG 复合支架的发展前景与挑战进行展望。  相似文献   

15.
Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton’s-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.  相似文献   

16.
How to fabricate bone tissue engineering scaffolds with excellent antibacterial and bone regeneration ability has attracted increasing attention. Herein, we produced a hierarchical porous β-tricalcium phosphate (β-TCP)/poly(lactic-co-glycolic acid)-polycaprolactone composite bone tissue engineering scaffold containing tetracycline hydrochloride (TCH) through a micro-extrusion-based cryogenic 3D printing of Pickering emulsion inks, in which the hydrophobic silica (h-SiO2) nanoparticles were used as emulsifiers to stabilize composite Pickering emulsion inks. Hierarchically porous scaffolds with desirable antibacterial properties and bone-forming ability were obtained. Grid scaffolds with a macroscopic pore size of 250.03 ± 75.88 μm and a large number of secondary micropores with a diameter of 24.70 ± 15.56 μm can be fabricated through cryogenic 3D printing, followed by freeze-drying treatment, whereas the grid structure of scaffolds printed or dried at room temperature was discontinuous, and fewer micropores could be observed on the strut surface. Moreover, the impartment of β-TCP in scaffolds changed the shape and density of the micropores but endowed the scaffold with better osteoconductivity. Scaffolds loaded with TCH had excellent antibacterial properties and could effectively promote the adhesion, expansion, proliferation, and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells afterward. The scaffolds loaded with TCH could realize the strategy to “kill bacteria first, then induce osteogenesis”. Such hierarchically porous scaffolds with abundant micropores, excellent antibacterial property, and improved bone-forming ability display great prospects in treating bone defects with infection.  相似文献   

17.
Porous scaffolds with photothermal effect could be used in the treatment of malignant bone tumors. Herein, graphene nanoplatelets were incorporated into the apatite/gelatin composites to construct porous scaffolds by 3D printing. Under near infrared laser irradiation, the composite scaffolds demonstrated high photothermal conversion efficiency. The temperature of scaffolds could be heated to 43 °C by controlling time and power of the laser irradiation, and then cooled to room temperature subsequently. Mild photothermal treatment (40–43 °C) was applied on MC3T3-E1 cells cultured on the scaffolds. It was found that after 3 cycles of treatment, the proliferation of MC3T3-E1 cells was significantly accelerated. It was suggested that the incorporation of graphene nanoplatelets into 3D printed hydroxyapatite composite scaffolds have the potential to accelerate bone regeneration after photothermal treatment for malignant bone tumors.  相似文献   

18.
Functionalized multiwall carbon nanotubes (f-MWCNTs) were used to reinforce the freeze-dried gelatin (G)/chitosan (Ch) scaffolds for bone graft substitution. Two types of G/Ch scaffolds at a ratio of 2:1 and 3:1 by weight incorporated with 0.025, 0.05, or 0.1 and 0.2 or 0.4?wt% f-MWCNT, respectively, were prepared by freeze drying, and their structure, morphology, and physicochemical and compressive mechanical properties were evaluated. The scaffolds exhibited porous structure with pore size of 80–300 and 120–140?µm for the reinforced scaffolds of G/Ch 2:1 and 3:1, respectively, and porosity 90–93% which slightly decreased with an increase in f-MWCNTs content for both types. Incorporation of f-MWCNTs led to 11- and 9.6-fold increase in modulus, with respect to their pure biopolymer blend scaffolds at a level of 0.05?wt% for G/Ch 2:1 and 0.2?wt% for G/Ch 3:1, respectively. The higher content of f-MWCNTs resulted in loss of mechanical properties due to agglomeration. The highest value of compressive strength and modulus was obtained for G/Ch 2:1 with 0.05?wt% f-MWCNT as 411?kPa and 18.7?MPa, respectively. Improvement of in vitro bioactivity as a result of f-MWCNTs incorporation was proved by formation of a bone-like apatite layer on the surface of scaffolds upon immersion in simulated body fluid. The findings indicate that the f-MWCNT-reinforced gelatin/chitosan scaffolds may be a suitable candidate for bone tissue engineering.  相似文献   

19.
《Ceramics International》2019,45(16):20331-20345
In this study, the effect of zinc oxide (ZnO) incorporation on the properties of Hydroxyapatite (HAp)/Poly(methyl methacrylate) (PMMA)/ZnO based composite bone scaffold is investigated. HAp is derived from calcination of bovine bone bio-waste and ZnO is synthesized by direct precipitation technique. Porous scaffolds are developed by gas foaming process using ammonium bicarbonate as the foaming agent and adding ZnO nanoparticles (NPs) at 2.5, 5, 7.5 and 10% (w/w) respectively. Incorporation of ZnO up to 5% (w/w) is found to significantly enhance the porosity, compressive strength, thermal stability and swelling properties of the developed scaffolds. In-vitro bioactivity and biodegradability assessment using simulated body fluid (SBF) show improved results of 5% ZnO loaded scaffolds. Furthermore, the composite scaffold show enhanced cytocompatibility during the in vitro cytotoxicity test performed using XTT assay. A comprehensive study on the scaffold properties shows that 5% ZnO composite scaffold exhibits the best-optimized properties suitable for bone tissue engineering applications.  相似文献   

20.
李根  李吉东 《化工进展》2021,40(12):6800-6806
兼具良好孔隙率和原位任意塑形固化的可注射复合多孔骨修复材料在临床不规则骨缺损的治疗方面显示出巨大的优势。本研究通过优化双组分设计,以水为发泡剂制备可注射纳米羟基磷灰石/聚氨酯(nHA/PU)复合多孔支架。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、力学测试及Gillmore针测试等手段对制备的支架进行结构形貌、化学组成、力学性能和固化时间表征。结果表明,本研究制备的可注射nHA/PU复合多孔支架孔隙率高、孔隙贯通性好,孔径分布在100~700μm,适宜细胞和组织向孔内生长;添加20% nHA显著提高了PU支架的力学强度,但降低了支架的孔隙率;可注射支架在8h固化,适宜临床操作。本研究制备的可注射nHA/PU复合多孔支架在不规则骨缺损修复领域具有较大的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号