首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Si thin‐film solar cells are suitable to the sunbelt region due to a low temperature coefficient and to building integrated photovoltaics owing to flexible size, easily controllable transmittance, and an aesthetic design. Nevertheless, the application is limited until now due to their low conversion efficiency. We have developed a triple junction cell (a‐Si:H/a‐SiGe:H/µc‐Si:H) providing efficient light utilization. For the high efficiency, we have focused on the smoothing of high haze TCO, a low absorption window layer, a low refractive index interlayer, uniformity control of the thickness and crystalline volume fraction in the microcrystalline silicon layer, and a low absorption back reflector. Through these activities, we have achieved a world record of 13.4% stabilized efficiency in the small size cell (1 cm2) and 10.5% stabilized efficiency in the large area module (1.1 × 1.3 m2), certificated by the National Renewable Energy Laboratory and Advanced Industrial Science and Technology, respectively. This result was presented in solar cell efficiency tables (Version 41). At this moment, we have increased a stabilized efficiency of 11.2% (Output power 160 W) in the large area module. We will report on the advanced materials in detail for high efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Reducing the optical losses and increasing the reflection while maintaining the function of doped layers at the back contact in solar cells are important issues for many photovoltaic applications. One approach is to use doped microcrystalline silicon oxide (μc‐SiOx:H) with lower optical absorption in the spectral range of interest (300 nm to 1100 nm). To investigate the advantages, we applied the μc‐SiOx:H n‐layers to a‐Si:H single junction solar cells. We report on the comparison between amorphous silicon (a‐Si:H) single junction solar cells with either μc‐SiOx:H n‐layers or non‐alloyed silicon n‐layers. The origin of the improved performance of a‐Si:H single junction solar cells with the μc‐SiOx:H n‐layer is identified by distinguishing the contributions because of the increased transparency and the reduced refractive index of the μc‐SiOx:H material. The solar cell parameters of a‐Si:H solar cells with both types of n‐layers were compared in the initial state and after 1000 h of light soaking in a series of solar cells with various absorber layer thicknesses. The measurement procedure for the determination of the solar cell performance is described in detail, and the measurement accuracy is evaluated and discussed. For an a‐Si:H single junction solar cell with a μc‐SiOx:H n‐layer, a stabilized efficiency of 10.3% after 1000 h light soaking is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Silicon based thin tandem solar cells were fabricated by plasma enhanced chemical vapor deposition (PECVD) in a 30 × 30 cm2 reactor. The layer thicknesses of the amorphous top cells and the microcrystalline bottom cells were significantly reduced compared to standard tandem cells that are optimized for high efficiency (typically with a total absorber layer thickness from 1.5 to 3 µm). The individual absorber layer thicknesses of the top and bottom cells were chosen so that the generated current densities are similar to each other. With such thin cells, having a total absorber layer thickness varying from 0.5 to 1.5 µm, initial efficiencies of 8.6–10.7% were achieved. The effects of thickness variations of both absorber layers on the device properties have been separately investigated. With the help of quantum efficiency (QE) measurements, we could demonstrate that by reducing the bottom cell thickness the top cell current density increased which is addressed to back‐reflected light. Due to a very thin a‐Si:H top cell, the thin tandem cells show a much lower degradation rate under continuous illumination at open circuit conditions compared to standard tandem and a‐Si:H single junction cells. We demonstrate that thin tandem cells of around 550 nm show better stabilized efficiencies than a‐Si:H and µc‐Si:H single junction cells of comparable thickness. The results show the high potential of thin a‐Si/µc‐Si tandem cells for cost‐effective photovoltaics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Mass‐adoption of thin‐film silicon (TF‐Si) photovoltaic modules as a renewable energy source can be viable if the cost of electricity production from the module is competitive with conventional energy solutions. Increased module performance (electrical power generated) is an approach to reduce this cost. Progress towards higher conversion efficiencies for ‘champion’ large area modules paves the way for mass‐production module performance to follow. At TEL Solar AG, Trübbach, Switzerland, significant progress in the absolute stabilized module conversion efficiency has been achieved through optimized solar cell design that integrates high‐quality amorphous and microcrystalline TF‐Si‐deposited materials with efficient light management and transparent conductive oxide layers in a tandem MICROMORPH™ module. This letter reports a world record large area (1.43 m2) stabilized module conversion efficiency of 12.34% certified by the European Solar Test Installation; an increase of more than 1.4% absolute compared with the previous record for a TF‐Si triple junction large area module. This breakthrough result generates more than 13.2% stabilized efficiency from each equivalent 1 cm2 of the active area of the full module. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The performance of photovoltaic modules is influenced by solar spectrum even under the same solar irradiance conditions. Spectral factor (SF) is a useful index indicating the ratio of available solar irradiance between actual solar spectrums and the standard AM1·5‐G spectrum. In this study, the influence of solar spectrum on photovoltaic performance in cloudy weather as well as in fine weather is quantitatively evaluated as the reciprocal of SF (SF−1). In the cases of fine weather, the SF−1 suggests that solar spectrum has little influence (within a few %) on the performance of pc‐Si, a‐Si:H/sc‐Si, and copper indium gallium (di)selenide modules, because of the “offset effect”. The performance of a‐Si:H modules and the top layers of a‐Si:H/µc‐Si:H modules can vary by more than ± 10% under the extreme conditions in Japan. The seasonal and locational variations in the SF−1 of the bottom layers are about ± several %. A negative correlation is shown between the top and bottom layers, indicating that the performance of a‐Si:H/µc‐Si:H modules does not exceed the performance, at which the currents of the top and bottom layers are balanced, by the influence of solar spectrum. In the cases of cloudy weather, the SF−1 of the pc‐Si, a‐Si:H/sc‐Si, and copper indium gallium (di)selenide modules is generally higher, suggesting favorable for performance than that in fine weather. Much higher SF−1 than that in fine weather is shown by the a‐Si:H module and the top layer of the a‐Si:H/µc‐Si:H module. The SF−1 of the bottom layer neither simply depend on season nor on location. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc‐Si:H) solar cells were examined. By increasing the RH (H2/SiH4) ratio from 90 to 220, the Si―C bond density in the p‐nc‐SiC:H films increased from 5.20 × 1019 to 7.07 × 1019/cm3, resulting in a significant increase of the bandgap from 2.09 to 2.23 eV in comparison with the bandgap of 1.95 eV for p‐nc‐Si:H films. For the films deposited at a high RH ratio, the Si nanocrystallites with a size of 3–15 nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p‐nc‐SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p‐nc‐SiC:H films deposited at RH = 220 were applied in the nc‐Si:H solar cells, a high conversion efficiency of 8.26% (Voc = 0.53 V, Jsc = 23.98 mA/cm2 and FF = 0.65) was obtained compared to 6.36% (Voc = 0.44 V, Jsc = 21.90 mA/cm2 and FF = 0.66) of the solar cells with reference p‐nc‐Si:H films. Further enhancement in the cell performance was achieved using p‐nc‐SiC:H bilayers consisting of highly doped upper layers and low‐level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an understanding of the fundamental carrier transport mechanism in hydrogenated amorphous silicon (a‐Si:H)‐based n/p junctions. These n/p junctions are, then, used as tunneling and recombination junctions (TRJ) in tandem solar cells, which were constructed by stacking the a‐Si:H‐based solar cell on the heterojunction with intrinsic thin layer (HIT) cell. First, the effect of activation energy (Ea) and Urbach parameter (Eu) of n‐type hydrogenated amorphous silicon (a‐Si:H(n)) on current transport in an a‐Si:H‐based n/p TRJ has been investigated. The photoluminescence spectra and temperature‐dependent current–voltage characteristics in dark condition indicates that the tunneling is the dominant carrier transport mechanism in our a‐Si:H‐based n/p‐type TRJ. The fabrication of a tandem cell structure consists of an a‐Si:H‐based top cell and an HIT‐type bottom cell with the a‐Si:H‐based n/p junction developed as a TRJ in between. The development of a‐Si:H‐based n/p junction as a TRJ leads to an improved a‐Si:H/HIT‐type tandem cell with a better open circuit voltage (Voc), fill factor (FF), and efficiency. The improvements in the cell performance was attributed to the wider band‐tail states in the a‐Si:H(n) layer that helps to an enhanced tunneling and recombination process in the TRJ. The best photovoltage parameters of the tandem cell were found to be Voc = 1430 mV, short circuit current density = 10.51 mA/cm2, FF = 0.65, and efficiency = 9.75%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Providing two‐thirds of the total stabilized power of thin‐film tandem MICROMORPHTM technology, the amorphous junction remains a key element in the quest for higher efficiencies. This paper reports and summarizes a considerable work to achieve a record large‐area amorphous silicon single‐junction photovoltaic module. New hardware has been developed and known process steps have been accurately tuned and combined with new features of cell design. Effort was focused on the deposition of high‐quality and low‐defect a‐Si:H layers that has promoted an improved device stability and resistance against light induced degradation. Efficient light management has been used, and module design has been revised. The word‐record performance reported in this paper for a large‐area (1.43 m2) stabilized module conversion efficiency (total area) was measured and certified by Swiss PV Module Test Center to be 9.1%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We have developed a new light‐trapping scheme for a thin‐film Si stacked module (Si HYBRID PULS module), where a (a‐Si:H/transparent interlayer/microcrystalline Si) thin‐film was integrated into a large‐area solar cell module. An initial aperture efficiency of 13·1% has been achieved for a 910 × 455 mm Si HYBRID PLUS module, which was independently confirmed by AIST. This is the first report of the independently confirmed efficiency of a large‐area thin‐film Si module with an interlayer. The 19% increase of short‐circuit current of this module was obtained by the introduction of a transparent interlayer that caused internal light‐trapping. A mini‐module was shown to exhibit a stabilized efficiency of 12%. Outdoor performance of a Si HYBRID (a‐Si:H / micro‐crystalline Si stacked) solar cell module has been investigated for over 4 years with two different kinds of module (top and bottom cell limited, respectively). The HYBRID modules limited by the top cell have exhibited a more efficient performance than the modules limited by the bottom cell, in natural sunlight at noon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
We report on improving the performance of pin‐type a‐Si:H/a‐SiGe:H/µc‐Si:H triple‐junction solar cells and corresponding single‐junction solar cells in this paper. Based on wet‐etching sputtered aluminum‐doped zinc oxide (ZnO:Al) substrates with optimized surface morphologies and photo‐electrical material properties, after adjusting individual single‐junction solar cells utilized in triple‐junction solar cells with various optimization techniques, we pay close attention to the optimization of tunnel recombination junctions (TRJs). By means of the optimization of individual a‐Si:H/a‐SiGe:H and a‐SiGe:H/µc‐Si:H double‐junction solar cells, we compensated for the open circuit voltage (Voc) loss at the a‐Si:H/a‐SiGe:H TRJ by adopting a p‐type µc‐Si:H layer with a low activation energy. By combining the optimized single‐junction solar cells and top/middle, middle/bottom TRJs with little electrical losses, an initial efficiency of 15.06% was achieved for pin‐type a‐Si:H/a‐SiGe:H/µc‐Si:H triple‐junction solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
We have passivated boron‐doped, low‐resistivity crystalline silicon wafers on both sides by a layer of intrinsic, amorphous silicon (a‐Si:H). Local aluminum contacts were subsequently evaporated through a shadow mask. Annealing at 210°C in air dissolved the a‐Si:H underneath the Al layer and reduces the contact resistivity from above 1 Ω cm2 to 14·9 m Ω cm2. The average surface recombination velocity is 124 cm/s for the annealed samples with 6% metallization fraction. In contrast to the metallized regions, no structural change is observed in the non‐metallized regions of the annealed a‐Si:H film, which has a recombination velocity of 48 cm/s before and after annealing. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This study evaluated the impact of partial shading on CuInxGa(1‐x)Se2 (CIGS) photovoltaic (PV) modules equipped with bypass diodes. When the CIGS PV modules were partially shaded, they were subjected to partial reverse bias, leading to the formation of hotspots and a possible occurrence of junction damage. In a module with a cadmium sulfide buffer layer, hotspots and wormlike defects were formed. The hotspots were formed as soon as the modules were shaded; the hotspots caused permanent damage (wormlike defects) in the CIGS module. Specifically, the wormlike defects were caused by the window layer, leading to increased recombination and decay of the solar cell properties. However, a CIGS module with a zinc sulfide buffer layer did not exhibit the formation of hotspots or any visual damage. The reverse bias breakdown voltage of the CIGS PV module with the cadmium sulfide buffer layer was higher than that of the CIGS PV module with the zinc sulfide buffer layer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper reports on the implementation of carrier‐selective tunnel oxide passivated rear contact for high‐efficiency screen‐printed large area n‐type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open‐circuit voltage iVoc of 714 mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back‐end high temperature process. In combination with an ion‐implanted Al2O3‐passivated boron emitter and screen‐printed front metal grids, this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n‐type Czochralski wafers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A ZnS/Zn1‐xMgxO buffer combination was developed to replace the CdS/i‐ZnO layers in in‐line co‐evaporated Cu(In,Ga)Se2(CIGS)‐based solar cells. The ZnS was deposited by the chemical bath deposition (CBD) technique and the Zn1‐xMgxO layer by RF magnetron sputtering from ceramic targets. The [Mg]/([Mg] + [Zn]) ratio in the target was varied between x = 0·0 and 0·4. The composition, the crystal structure, and the optical properties of the resulting layers were analyzed. Small laboratory cells and 10 × 10 cm2 modules were realized with high reproducibility and enhanced stability. The transmission is improved in the wavelength region between 330 and 550 nm for the ZnS/Zn1‐xMgxO layers. Therefore, a large gain in the short‐circuit current density up to 12% was obtained, which resulted in higher conversion efficiencies up to 9% relative as compared to cells with the CdS/i‐ZnO buffer system. Peak efficiencies of 18% with small laboratory cells and 15·2% with 10 × 10 cm2 mini‐modules were demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
An ultrathin SiO2 interfacial buffer layer is formed using the nitric acid oxidation of Si (NAOS) method to improve the interface and electrical properties of Al2O3/Si, and its effect on the leakage current and interfacial states is analyzed. The leakage current density of the Al2O3/Si sample (8.1 × 10?9 A cm?2) due to the formation of low‐density SiOx layer during the atomic layer deposition (ALD) process, decreases by approximately two orders of magnitude when SiO2 buffer layer is inserted using the NAOS method (1.1 × 10?11 A cm?2), and further decreases after post‐metallization annealing (PMA) (1.4 × 10?12 A cm?2). Based on these results, the influence of interfacial defect states is analyzed. The equilibrium density of defect sites (Nd) and fixed charge density (Nf) are both reduced after NAOS and then further decreased by PMA treatment. The interface state density (Dit) at 0.11 eV decreases about one order of magnitude from 2.5 × 1012 to 7.3 × 1011 atoms eV?1 cm?2 after NAOS, and to 3.0 × 1010 atoms eV?1 cm?2 after PMA. Consequently, it is demonstrated that the high defect density of the Al2O3/Si interface is drastically reduced by fabricating ultrathin high density SiO2 buffer layer, and the insulating properties are improved.  相似文献   

16.
We have fabricated efficient (∼7–8%) hydrogenated microcrystalline Si1–xGex (µc‐Si1–xGex:H, x ∼ 0.1–0.17) single junction p‐i‐n solar cells with markedly higher short‐circuit current densities than for µc‐Si:H (x = 0) solar cells due to enhanced infrared absorption. By replacing the conventional µc‐Si:H with the µc‐Si1–xGex:H as infrared absorber in double junction tandem solar cells, the bottom cell thickness can be reduced by more than half while preserving the current matching with hydrogenated amorphous silicon (a‐Si:H) top cell. An initial efficiency of 11.2% is obtained for a‐Si:H/µc‐Si0.9Ge0.1:H solar cell with bottom cell thickness less than 1 µm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Mg2Si unileg structure thermoelectric (TE) modules, which are composed only of n-type Mg2Si legs, were fabricated using Sb-doped Mg2Si. The Mg2Si TE legs used in our module were fabricated by a plasma-activated sintering method using material produced from molten commercial doped polycrystalline Mg2Si, and, at the same time, nickel electrodes were formed on the Mg2Si using a monobloc plasma-activated sintering technique. The source material used for our legs has a ZT value of 0.77 at 862 K. The TE modules, which have dimensions of 21 mm × 30 mm × 16 mm, were composed of ten legs that were connected in series electrically using nickel terminals, and the dimensions of a single leg were 4.0 mm  × 4.0 mm × 10 mm. From evaluations of the measured output characteristics of the modules, it appeared that the electrical resistance of the wiring that is used to connect each leg considerably affects the power output of the unileg module. Thus, we attempted to reduce the wiring resistance of the module and fabricated a module using copper terminals. The observed values of the open-circuit voltage and output power of the Sb-doped Mg2Si unileg module were 496 mV and 1211 mW at ΔT = 531 K (hot side: 873 K; cool side: 342 K).  相似文献   

18.
As an interesting layered material, molybdenum disulfide (MoS2) has been extensively studied in recent years due to its exciting properties. However, the applications of MoS2 in optoelectronic devices are impeded by the lack of high‐quality p–n junction, low light absorption for mono‐/multilayers, and the difficulty for large‐scale monolayer growth. Here, it is demonstrated that MoS2 films with vertically standing layered structure can be deposited on silicon substrate with a scalable sputtering method, forming the heterojunction‐type photodetectors. Molecular layers of the MoS2 films are perpendicular to the substrate, offering high‐speed paths for the separation and transportation of photo‐generated carriers. Owing to the strong light absorption of the relatively thick MoS2 film and the unique vertically standing layered structure, MoS2/Si heterojunction photodetectors with unprecedented performance are actualized. The self‐driven MoS2/Si heterojunction photodetector is sensitive to a broadband wavelength from visible light to near‐infrared light, showing an extremely high detectivity up to ≈1013 Jones (Jones = cm Hz1/2 W?1), and an ultrafast response speed of ≈3 μs. The performance is significantly better than the photodetectors based on mono‐/multilayer MoS2 nanosheets. Additionally, the MoS2/Si photodetectors exhibit excellent stability in air for a month. This work unveils the great potential of MoS2/Si heterojunction for optoelectronic applications.  相似文献   

19.
In this work we study the optimization of laser‐fired contact (LFC) processing parameters, namely laser power and number of pulses, based on the electrical resistance measurement of an aluminum single LFC point. LFC process has been made through four passivation layers that are typically used in c‐Si and mc‐Si solar cell fabrication: thermally grown silicon oxide (SiO2), deposited phosphorus‐doped amorphous silicon carbide (a‐SiCx/H(n)), aluminum oxide (Al2O3) and silicon nitride (SiNx/H) films. Values for the LFC resistance normalized by the laser spot area in the range of 0.65–3 mΩ cm2 have been obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Solar PV is widely considered as a “green” technology. This paper, however, investigates the environmental impact of the production of solar modules made from thin‐film silicon. We focus on novel applications of nano‐crystalline Silicon materials (nc‐Si) into current amorphous Silicon (a‐Si) devices. Two nc‐Si specific details concerning the environmental performance can be identified, when we want to compare to a‐Si modules. First, in how far the extra (and thicker) silicon layer (s) affects upstream material requirements and energy use. Second, in how far depositing an extra silicon layer may increase emissions of greenhouse gases as additional emissions of Fluor gases (F‐gases) are associated to this step. The much larger global warming potential of F‐gases (17 200–22 800 times that of CO2) may lead to higher environmental burdens. To date, no study has yet analyzed the effect of F‐gas usage on the environmental profile of thin‐film silicon solar modules. We performed a life‐cycle assessment (LCA) to investigate the current environmental usefulness of pursuing this novel micromorph concept. The switch to the new micromorph technology will result in a 60–85% increase in greenhouse gas emissions (per generated kWh solar electricity) in case of NF3 based clean processing, and 15–100% when SF6 is used. We conclude that F‐gas usage has a substantial environmental impact on both module types, in particular the micromorph one. Also, micromorph module efficiencies need to be improved from the current 8–9% (stabilized efficiency) toward 12–16% (stab. eff.) in order to compensate for the increased environmental impacts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号