首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of geotechnical and mineralogical investigations on lime treated clay soils from Hamedan City, Iran, and effects of pH variations on their shear strength parameters. Initially, lime was added in different percentages and laboratory experiments were conducted after curing times. The results indicate that these soils can be stabilized satisfactorily with the addition of about 7 % lime. Also, investigation of the relationship between lime-treated geotechnical properties and lime percentage and curing time demonstrates high regression coefficients for the proposed relationships. Several laboratory tests were performed on treated and untreated clay soils with lime mixed with pore fluids with different pH values including 3, 5, 7 and 9. The results of shear strength tests indicated that the undrained shear strength parameters for untreated clays increased considerably if the pore fluid had a high pH (pH = 9) or a low pH (pH = 3). It can also be found that for lime-treated soils, maximum cohesion and friction angle values are achieved at pH = 9.  相似文献   

2.
通过改良膨胀土养护过程中的同步横向和竖向电阻率测试,由测试结果计算出改良膨胀土的电阻率结构性参数,包括平均结构因子、各向异性系数以及平均形状因子的大小。通过对电阻率结构性参数在养护过程中变化规律的研究,定量分析掺灰改良膨胀土养护过程中的微结构变化规律。养护过程中的平均结构因子、平均形状因子以及各向异性系数分别代表了土的...  相似文献   

3.
石灰处治膨胀土冻融循环试验研究   总被引:1,自引:0,他引:1  
通过对冻融循环后的石灰处治膨胀土土样进行固结不排水三轴试验,研究了冻融循环对土样抗剪强度指标和抗剪强度的影响,建立了抗剪强度指标和抗剪强度与冻融循环次数之间的关系,分析了处治膨胀土冻融循环的破坏机理。  相似文献   

4.
《Soils and Foundations》2012,52(2):228-238
Saline soils in inshore areas have characteristics that are problematic to engineering such as salt expansion, dissolution and water absorption; therefore, these soils cannot meet the requirements of strength and anti-deformation in construction. A method of reinforcing saline soil with wheat straw and lime was investigated in this study. Specifically, the feasibility of using wheat straw treated with an SH (modified polyvinyl alcohol) agent as reinforcement and the compaction and strength of saline soil reinforced with wheat straw and lime were investigated. The results indicated that wheat straw treated with SH agent is suitable for use as a reinforced material owing to its higher corrosion resistance, tensile force and elongation. Additionally, reinforcement with wheat straw and lime was found to have a positive effect on the mechanical properties of soil. Reinforcement with wheat straw fiber enhanced the strength of soil during the early curing period and reduced the brittle failure problem associated with lime soil. Reinforcing soil with wheat straw and lime is an effective method for improving soil in the geotechnical field.  相似文献   

5.
为了研究石灰改良膨胀土得最优施工含水率与石灰土相关强度的关系,文中以某边坡膨胀土为研究对象,进行了直剪试验、CBR及无侧限抗压强度等相关强度的试验研究,研究了最优施工含水率、掺灰率与膨胀土强度的关系,试验结果表明石灰土的直剪、CBR值及无侧限抗压强度曲线与施工含水率的关系曲线类似于击实曲线,且最优施工含水率随着掺灰率的增大而线性增大,强度与掺灰率的关系曲线与击实曲线类似,存在最优掺灰率,这些结果的得出对现行石灰土路基施工控制参数的确定方法改进具有一定的指导作用。  相似文献   

6.

Carbide lime is a by-product obtained during the manufacturing of acetylene from the reaction of calcium carbide and water. A major portion of carbide lime is dumped in waste deposition areas, creating an environmental problem. Carbide lime and fly ash have possible applications in slope stabilization, subgrade improvement of roads, and soil treatments under shallow foundations. A series of Atterberg limits tests, compaction tests, unconfined compressive strength tests, ultrasonic pulse velocity tests, and wetting–drying tests were performed on carbide lime and fly ash treated clay soils to evaluate the effects of additive content, curing time, strength development, and the effects of wetting and drying. A total of 8% of carbide lime constituted the fixation point, and peak strength was achieved at 12% carbide lime content. A total amount of 25% additive was found as a threshold changing the Atterberg limits. Test results indicated that the strength of the treated soil improved by the existence of carbide lime and fly ash; best performance was observed in 28-day specimens with 10% carbide lime and 20% fly ash content reaching to 8 times larger strength than untreated soil. The failure patterns of the specimens reflected the curing time and wetting–drying effects. Although, the application of wetting–drying cycles deteriorated the treated soil, the presence of carbide lime partially prevented the strength loss. New relationships between normalized strength and curing time depending on carbide lime content were proposed. Furthermore, a linear relationship between the unconfined compressive strength and the ultrasonic pulse velocity of the treated soils was established.

  相似文献   

7.

The geotechnical properties and microstructures of lime-stabilized silt clay from Jilin province, China, were studied in detail. Laboratory tests were conducted to evaluate the effects of lime content and curing time on the overall soil properties, including compaction characteristics, Atterberg limits, particle size distribution, pH, stress–strain behavior, peak strength, shear strength parameters, and California bearing ratio (CBR). The stabilized mechanisms of lime in silt clay were examined, and the observed test results were explained based on the results of scanning electron microscropy (SEM) and X-ray diffraction analyses of the specimens. Lime content and curing duration significantly influenced the geotechnical properties and microstructure of the lime-stabilized silt clay specimens. An increase in lime content resulted in increases in compaction water content, liquid limit, plastic limit, sand size-fractions, pH, peak strength, cohesion, internal friction angle, and the CBR, but led to a reduction in the plasticity index, silt fractions, clay fractions, swelling capacity, and water absorption. Also, the addition of lime to silt clay changed this soil type from a ductile to a brittle material. The optimum lime content of the silt clays from Jilin province was determined to be approximately 5–7%. SEM micrographs showed that a white cementitious gel was formed after the addition of lime and that peaks related to smectite, illite, kaolinite, and quartz appeared to be sharper after stabilization with lime and a 90-day period of curing. These results show that the geotechnical properties of lime-stabilized silt clay are affected by the microstructural organization of the silt clay itself.

  相似文献   

8.
非饱和膨胀土抗剪强度的试验研究   总被引:21,自引:1,他引:21  
膨胀土是一种特殊的非饱和土,经典的土力学理论在膨胀土问题中己显得无能为力。因此,用非饱和土力学理论来研究膨胀土问题在理论和实际两方面都具有重大意义。在非饱和土抗剪强度理论中,吸力的量测在工程实际中仍没有一种简单易行的方法。基于这种实际情况,试图通过其他间接的途径来代替吸力的量测,以确定非饱和土的吸附强度。对于膨胀土这种典型的非饱和土,膨胀力是其很重要的性质之一,它的大小受含水量的影响很大;另一方面,膨胀土的抗剪强度也随含水量的变化而不断地变化。进行了大量的膨胀力试验和抗剪强度试验,以确定膨胀土的膨胀力与吸附强度是否有一定的关系。通过对黑山土和梅山土的重塑试样试验得到的试验数据分析发现:膨胀力和含水量之间存在良好指数关系;粘聚力的对数和内摩擦角均随含水量的增大线性减小;非饱和膨胀土的吸附强度与膨胀力之间存在较好的线性关系,并在此基础上优化了非饱和膨胀土抗剪强度公式。  相似文献   

9.
三峡库区膨胀土的发现和研究   总被引:20,自引:0,他引:20       下载免费PDF全文
在三峡库区地质调查中 ,遇到了一种工程性质不良、易于导致滑坡等地质灾害的粘土 ,通过对物质组成、水理和物化性质的测试 ,按粘土膨胀势判别的国家标准 ,它们为弱膨胀性粘土 ,而按国外流行的WilliamsandDonaldson( 1980 )粘土膨胀势判别法 ,它们介于mediumexpansion与highexpansion势粘土之间。通过采用XRD技术对粘土矿物定量测试 ,表明主要膨胀性粘土矿物为中等混层比的I/S混层矿物。综合野外调查和室内测试结果 ,研究了它们的成因、分布和成灾机理 ,提出了治理措施。三峡库区膨胀土的发现和研究对我国膨胀土形成发展规律的认识和对三峡库区移民迁建工程规划以及地基边坡处理有重要的理论和实际意义。  相似文献   

10.
The long-term viability of many construction projects is heavily dependent on the soundness of the underlying subgrade soil which needs to be capable of supporting loads from structures without undergoing excessive deformation or volume changes. However, in certain locations geotechnical engineers face repeated problems in the design of substructures due to the presence of expansive soils. Light structures are especially susceptible to damage in such situations which can result in cracks in walls, beams, columns and on-grade slabs. One extensively used way of overcoming such problems is to improve the soil by stabilizing it with cement and/or lime which prevents this unwanted behavior. Most previous research conducted on expansive soils focused on studying the effects of treatment on the physical properties of the soil without detailed examination of the physicochemical mechanism of the process, although some studies surveyed the effect of the treatment using cement and lime on the mineralogical composition and newly formed pozzolanic compounds. In this research the mineralogical changes due to lime and cement additions to two different expansive soils from Saudi Arabia, in particular, were investigated using X-ray diffraction. The results of this work indicate that addition of lime or cement to the soils tested resulted in the formation of pozzolanic compounds, namely, calcium silicate hydrate and calcium aluminate hydrate together with calcite (CaCO3). The soil improvements are compared for cement and lime. Changes in potassium, aluminum and silicon were also determined and interpreted in terms of the soil mineralogy. It was concluded that pozzolanic compounds play a significant role in reducing the swelling and increasing the strength.  相似文献   

11.
《Soils and Foundations》2002,42(5):79-89
In order to study stress-strain-strength and yielding characteristics of lime treated clay, an extensive testing program was conducted on lime treated clay. It was found that the main effect of lime treatment was to change the soft clay from normally consolidated to overconsolidated behavior. Heavily overconsolidated characteristics were observed for stress states inside the volumetric yield locus obtained from anisotropic consolidation tests. The volumetric yield loci of lime treated clays were found to be more pronounced than distortional or strain path yield locus. Outside the volumetric yield locus, the behavior was found to consist of an initial pseudo-elastic phase followed by a stage where the behavior appears to be similar to that of a work-hardening plastic material as the stress path proceeds towards the curved failure envelopes. The treated clays strain-softened after failure with the residual stress states lying close to the critical state line of the untreated clay. A conceptual model to describe the behavior of lime treated clay is introduced, in which the presence of distortional yield locus shifts with lime content and curing time.  相似文献   

12.
膨胀土具有遇水膨胀、失水收缩的工程特性,掺加一定量水泥对其进行改性是处理膨胀土的主要方法之一。选取引江济淮工程弱膨胀土,通过对素膨胀土和改性土的自由膨胀率、界限含水率及无侧限抗压强度的试验分析,揭示了水泥掺量和养护日期对引江济淮工程弱膨胀土的物理力学性质的影响。试验结果表明:(1)随掺灰率的增加,改性膨胀土的自由膨胀率、液限、塑性指数均降低,无侧限抗压强度增加;(2)随养护日期的增加,自由膨胀率、液限、塑性指数减小,无侧限抗压强度增大;(3)基于本研究试验结果,同时综合考虑工程实际,建议引江济淮工程弱膨胀土水泥改性剂量为4%。  相似文献   

13.
给出了用粉煤灰、炉渣等工业废料加固土的室内无侧限抗压强度试验结果,分析了加固土无侧限抗压强度与外加剂掺量、养护龄期之间的影响规律,得出了针对不同工业废料加固土所用外加剂的最佳掺量。  相似文献   

14.
Unconfined compression tests and suction measurements were carried out in the present work on sandy specimens with distinct Class F fly ash amounts, lime contents, porosities and curing periods to assess key parameters controlling strength of fly ash-lime amended soil. A special effort has been allocated in order to develop a dosage methodology for fly ash-lime improved soils based in a rational criterion, as it exists in the concrete technology where the water/cement ratio plays a fundamental role in the assessment of the target strength. The results show that the unconfined compressive strength (UCS) increased linearly with the amount of lime for soil-fly ash-lime mixtures at all curing time periods studied. A power function fits better the relation UCS-porosity for soil-fly ash-lime mixtures. The bigger the amount of fly ash and the curing time, the larger the UCS for any given porosity and lime content. Finally, the porosity/volumetric lime content ratio, in which volumetric lime content is adjusted by a coefficient (in this case a unique value-0.12-was found for all soil-fly ash-lime mixtures and all curing periods studied) to end in single correlations for each curing period, show to be a good parameter in the evaluation of the unconfined compressive strength of the soil studied (UCS varies non-linearly with the porosity/volumetric lime content ratio in the case of fly ash-lime addition).  相似文献   

15.
改良膨胀土的干湿循环特性试验研究   总被引:1,自引:1,他引:0  
杨成斌  查甫生  崔可锐 《工业建筑》2012,42(1):98-102,12
干湿循环作用对改良膨胀土的工程性质存在重要的影响,而目前这方面的研究成果很少。以掺石灰和粉煤灰改良的典型合肥膨胀土为研究对象,通过系统的室内试验,研究在干湿循环作用下,改良膨胀土的膨胀性、界限含水量、颗粒分布以及无侧限抗压强度等方面的变化规律,深入探讨干湿循环作用对改良膨胀土工程性质的影响。结果表明,改良膨胀土的膨胀量、液限、塑性指数、黏粒含量随干湿循环次数的增加而增大,而塑限、粉粒含量以及无侧限抗压强度则随干湿循环次数的增加而减小。  相似文献   

16.
Volume instability of expansive soils due to moisture fluctuations is often disastrous, causing severe damages and distortions in the supported structures. It is, therefore, necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements. This can be achieved through chemical stabilization using additives such as lime, cement and fly ash. In this paper, suitability of such additives under various conditions and their mechanisms are reviewed in detail. It is observed that the stabilization process primarily involves hydration, cation exchange, flocculation and pozzolanic reactions. The degree of stabilization is controlled by several factors such as additive type, additive content, soil type, soil mineralogy, curing period, curing temperature, delay in compaction, pH of soil matrix, and molding water content, including presence of nano-silica, organic matter and sulfate compounds. Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction. However, presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones.  相似文献   

17.
《Soils and Foundations》2023,63(4):101333
Cement and lime are widely used to stabilize/solidify (S/S) contaminated soils, however, the production of ordinary Portland cement (OPC) and lime causes CO2 emission and consumption of energy and non-renewable resource. In this context, this study proposes a sustainable S/S approach by utilizing an industrial by-product, ladle slag (LS), and carbon dioxide (CO2), to substitute cement and lime for treating cadmium (Cd)-contaminated soil. In laboratory investigation, contaminated soils spiked by Cd with concentrations of 0–32,000 mg/kg were treated by LS with a binder content of 10 % and subjected to conventional curing and carbonation curing for different periods varying from 3 hours to 112 days. The results showed that LS with conventional curing could reduce the leaching of Cd, however, it was still less effective than OPC in S/S of Cd-contaminated soils under the same curing period of 28 days. When CO2 was introduced, LS with CO2 rapidly decreased the leaching of Cd in soils by five orders of magnitude, using only 104 hours to achieve better S/S efficacy than OPC with conventional curing for 28 days. The LS with carbonation curing also sequestered CO2 up to 16 % of LS mass and yielded higher strength than that without CO2.  相似文献   

18.
自由膨胀比指标评价改良膨胀土的膨胀性   总被引:1,自引:0,他引:1  
针对自由膨胀率试验中存在的不足以及改良膨胀土膨胀性评价的难点,引入自由膨胀比指标用于掺灰改良膨胀土的膨胀性评价。试验研究表明:自由膨胀比指标与改良膨胀土的基本物理力学性质指标(包括颗粒分布、界限含水率等)以及常用的膨胀土胀缩性指标(包括自由膨胀率、膨胀量、膨胀力与线缩率)间存在良好的线性相关关系。自由膨胀比方法具有操作相对简单,可靠性好等优点,对实际工程的预测结果与实测结果基本一致。利用自由膨胀比指标可以有效进行改良膨胀土膨胀性强弱的预测评价,具有重要的理论意义和应用价值。  相似文献   

19.
本文以改良膨胀土标准养护7 d的无侧限抗压强度为研究对象,分别在膨胀土中掺入水泥、石灰、粉煤灰、风化砂来进行单一方法改良,测试其无侧限抗压强度;在膨胀土中分别掺入水泥和风化砂、石灰和风化砂、粉煤灰和风化砂来进行复合方法改良,进行无侧限抗压强度试验。试验结果表明,在膨胀土中分别单一掺入水泥、石灰、粉煤灰、风化砂均能有效提高改良膨胀土的无侧限抗压强度,而且石灰、粉煤灰、风化砂的掺入量均有一个最佳值,使改良膨胀土的无侧限抗压强度达到最大值,从提高膨胀土无侧限抗压强度的角度来讲,单一方法改良的效果由好到差依次是水泥、石灰、风化砂、粉煤灰。而在膨胀土中分别掺入水泥和风化砂、石灰和风化砂、粉煤灰和风化砂来进行复合方法改良,无侧限抗压强度值均有了大幅度的提升,从提高无侧限抗压强度的角度来看,水泥和风化砂复合改良的效果要优于石灰和风化砂复合改良的效果,粉煤灰和风化砂复合改良的效果最差。通过复合改良方法与单一改良方法对比,可以发现,在相同条件下,复合改良方法的无侧限抗压强度值要比单一改良方法大得多,复合改良方法要大大优于单一改良方法。  相似文献   

20.
空军汉口新机场试验路段石灰改性膨胀土试验研究   总被引:2,自引:0,他引:2  
空军汉口新机场试验路段石灰改性膨胀土(简称灰土)试验研究包括室内和现场试验研究。室内试验研究包括:天然膨胀土与击实膨胀土的基本物理特性和胀缩特性试验、灰土击实试验以及膨胀土掺石灰改性试验等。室内试验结果表明:击实膨胀土比天然膨胀土的膨胀潜势更大;在道面下一定范围内,填料不能采用膨胀土,而必须用灰土;石灰能有效地对场区内的膨胀土进行改性,最优石灰掺合比为6%~8%:不同灰土层的最大干密度与最佳含水量差异较大,现场施工填料不能混填。现场试验包括:碾压试验、压实灰土基本物理特性和胀缩特性试验、浸水载荷试验、测定路基回弹模量和回弹弯沉试验等。现场试验结果表明:在有效控制灰土的石灰掺量和含水量情况下,采用激振力为450kN的碾压机对松铺厚度为50和30cm的灰土进行碾压,分别需碾压8和6遍,路基压路度才能达到95%,表面沉降才趋于稳定;现场压实灰土的膨胀潜势很低,仍有明显失水收缩特性,在施工时应注意采取保水措施;压实灰土具有较高承载能力、强度特性和吸水稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号