共查询到18条相似文献,搜索用时 84 毫秒
1.
2.
3.
为了研究包衬侵蚀对钢水温降的影响规律,通过ANSYS有限元软件以及ParaMesh网格随移技术建立了考虑包衬侵蚀的钢包传热计算模型,研究并分析了包衬侵蚀对包衬及钢水温度的影响规律。结果表明,包衬侵蚀对包衬温度影响较大,在相邻两个修包周期内,包衬侵蚀造成渣线和包壁的包衬内部(工作层与永久层交界处)温差为14~114 K;包衬侵蚀导致包壳外表面温度升高,包壳向外散热增加,与此同时,包衬受侵蚀变薄,蓄热减少,两者同时作用导致包衬侵蚀对钢水温降影响不大,最高不超过1 K,在实际生产中可以适当地忽略钢包侵蚀对钢水温降的影响。 相似文献
4.
5.
6.
现代化高效连续炼钢的关键是钢水温度控制,钢包热状态是钢包周转过程中钢水温降的重要影响因素,因而烘烤结束时的钢包热状态至关重要.由于钢包内部温度较高,生产场地布局复杂,电子原件的使用寿命较短等原因,传统的实测法和数值模拟等方法都无法实现包衬内部实时接触式测温.针对上述情况,文章运用有限差分法正向求解包衬温度场,再建立非稳态的钢包传热一维数学模型,采用Fluent软件模拟火焰温度场,用传热反问题研究方法以钢包易测量的包壳温度为已知条件,对包衬温度分布进行数学反演,并通过计算机C#语言对210t钢包烘烤过程进行智能化模拟追踪,编写了烘烤过程的温度场实时监控软件,为钢包调度和编制合理的烘烤制度提供了一个切实可行的新方法. 相似文献
7.
8.
建立了基于有限元法的钢包二维传热模型,运用Ansys软件对钢包在不同绝热层厚度情况下的热状态及保温性能分别进行了模拟计算.有绝热层的钢包可以明显地提高自身的保温性能,且随着绝热层厚度的增加,保温效果愈加突显,但幅度越来越小.与无绝热层的钢包相比,在绝热层厚度达到20 mm时,钢包预热时间缩短约1 h,节约煤气消耗1000 m3,降低钢水温降约6℃.在热饱和阶段,钢包外壁温度平均降低了100℃,包壁散热减小,1h可以节能1255680kJ,折合标准煤43kg.最后利用现场实测数据进行了验证,结果表明模拟结果正确可信. 相似文献
9.
10.
11.
Combined with the parameters of the production process of a steel factory, numerical simulations for a new ladle from preheating to turnover are conducted using the finite element analysis system software (ANSYS). The measured data proved that the simulated results are reliable. The effects of preheating time, thermal cycling times, and empty package time on steel temperature are calculated, an ideal preheating time is provided, besides, based on the analysis of a single factor and use the nonlinear analysis method, a steel temperature compensating model with di- versified coupling factors is proposed, with the largest error of the present coupling model at 1. 462 ~C, and the er- rors between actual and target steel temperature in tundish after the model is applied to practical production are basi- cally controlled within -4-6 ~C, which can meet the accuracy of the manufacturer and has a practical guiding significance for the production in steelmaking workshops. 相似文献
12.
13.
钢包红包出钢率的提高对优化钢包热状态、降低转炉出钢温度以及保证铸机恒拉速浇注都有重要意义。首先分析了炼钢厂钢包周转过程,然后建立了钢包周转过程的仿真模型,运行仿真模型并分析了空包时间、热修时间和修包包龄等因素对红包出钢率的影响,特别研究了钢包周转率与红包出钢率的关系。仿真结果表明:红包出钢率随空包时间增加而降低;日产45炉典型钢种时,随着热修时间增加,红包出钢率由94%减少到45%;修包包龄越高,红包出钢率增加越明显;同时,随着红包出钢率提高,钢包周转率在一定程度上也有所提高。仿真结果对炼钢厂提高红包出钢率和优化能源消耗具有重要指导意义。 相似文献
14.
15.
A mathematical model for predicting the melt temperatures in the ladle and in the tundish during continuous casting has been developed. First of all, a chain of models was created for the following stages of the ladle cycle; the preheating of the empty ladle, filling of the ladle, period in the ladle furnace, waiting period prior to casting, the casting period, and, finally, the free cooling period of the empty ladle. Models, written in CFD code, were used in sequence so that each simulation continued from the results of the simulation of the previous stage. An intermediate model was constructed to estimate the outlet temperature of melt drained from the ladle. Then the work was continued by performing simulations in the tundish, using as input the temperature of the simulated melt feed from the ladle and, as an initial condition, the temperature field of the remaining melt in the tundish. The final model “TEMPARV3” was created and tested by means of measured tundish data received from a steel plant. By means of statistical analysis the coefficients of correlation between the test data and model data at the start, in the middle period, and at the end of casting were calculated to be 0.9, 0.92 and 0.87, respectively. So, the most effective predictive power of the model in the tundish by means of a sequential casting schedule is realized during the middle period of the casting process. The model is applied interactively by a user interface, which expresses the predicted melt temperatures numerically and with graphical curves. The predictive model can be used off‐line as a tool for scheduling the stage operations in advance. The program may be utilized on‐line to estimate the superheat needed and to control periods of the operation. In extreme cases, when the model alerts the operator about the danger of superheat loss having a critical effect on casting, the operator has a chance to take adjustment measures. In addition to production work, the model could be of benefit for studying changes in operating parameters, for training operators, and for use as a “low‐cost computational pilot plant” in process development in general. 相似文献
16.
17.