首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为了减少C-Mn钢Q345B中Mn合金消耗,采用Ti微合金化的成分设计思路,通过细晶强化和析出强化保证Q345B钢的强度.该钢种在天铁1 750 mm半连续热连轧机组实现了工业化生产.热轧加热温度1 200℃,终轧温度在840~880℃,卷取温度在550~620℃.通过采用合理的控轧控冷工艺,使钢板获得了良好的金相组织和力学性能,显著降低了生产成本.  相似文献   

2.
以新型含铌高强细晶IF钢为研究对象,在实验室进行了冷轧以及轧后模拟连续退火实验.结果表明,选择合适的退火时间,晶粒变得细小、均匀,同时存在一定量的饼形晶粒.由于添加Si、Mn等固溶强化元素,增加了钢的固溶强化作用;而合金元素Nb的添加,在组织中形成了细小的碳氮化物Nb(C,N),这些碳氮化物弥散分布,通过细晶强化和沉淀析出强化增加了钢的抗拉强度,因而高强细晶IF钢的强化机制为固溶强化、细晶强化和沉淀析出强化.更值得注意的是,由于存在PFZ带(无析出物区)而使实验钢呈现高强度低屈服现象.与传统的IF钢相比,含铌高强细晶IF钢不仅具有细小的晶粒,而且具有低的屈服强度、较高的r值等良好的成型性能.  相似文献   

3.
500 MPa级超级钢工业实验   总被引:4,自引:0,他引:4  
为了使普通碳素结构钢Q235的屈服强度提高到500MPa以上,对其化学成分进行调整:提高Mn元素的含量并加入微量微合金元素Nb(小于0.02%Nb),与控制轧制控制冷却工艺相结合。在本钢1700热轧机上进行了2次工业实验。结果表明,终轧温度为850℃左右,卷取温度550℃左右时,在细晶强化、相变强化和沉淀强化的综合作用下,实验钢屈服强度达到500MPa以上,冲击韧性良好,伸长率大于25%。  相似文献   

4.
对Fe-24Mn-3Si-3Al TWIP钢在不同退火工艺下进行力学性能测试,采用扫描电子显微镜(SEM)、能谱仪(EDS)和透射电子显微镜(TEM)观察钢的微观组织形貌.结果表明:随着退火温度和保温时间的变化,TWIP钢的力学性能并不符合常规的单调上升或下降的规律,而在退火温度为800℃、保温10 min和退火温度为900℃、保温20 min时发生波动.退火温度为800℃、保温10 min条件下,钢的主要强化机制为析出强化,析出相(Fe,Mn)23C6的增多导致屈服和抗拉强度升高;退火温度为900℃、保温20 min条件下,钢中的析出相并未有明显的变化,而二次孪晶的产生及孪晶相互交割成为抗拉强度增加的主导因素.   相似文献   

5.
采用光学显微镜和透射电子显微镜等对500 MPa级Nb Ti微合金化方矩形管用钢的组织与性能进行了分析,研究了其强化机制。结果表明,终轧温度和卷取温度对试验钢的组织和力学性能有显著影响,在研究的温度范围内,终轧温度和卷取温度的降低均有利于获得更加细小的铁素体晶粒与细小弥散的第二相析出物;当卷取温度不变时,随着终轧温度的下降,屈服强度、抗拉强度和断后伸长率均升高;当终轧温度不变时,随着卷取温度的逐渐下降,屈服强度和抗拉强度呈现出先上升后下降的规律,而断后伸长率呈现出单调上升的规律;试验钢在终轧温度为840 ℃和卷取温度为570 ℃时可获得最优的综合力学性能,其屈服强度和抗拉强度分别为537和578 MPa,断后伸长率为33.5%;细晶强化是试验钢最主要的强化机制,由晶粒细化引起的强度增量占总强度的49%~51%,由固溶强化引起的强度增量次之,占总强度的23%~27%,由析出强化引起的强度增量较小,仅占总强度的3.8%~8.2%。  相似文献   

6.
陈林恒  王文涛  李昭东  崔强  隋凤利  张可 《钢铁》2020,55(11):91-102
 为了推动耐火钢的市场应用,采用低碳、低钼(约0.2%)及铌、钒、钛的复合微合金化成分设计,成功开发出低成本Q345耐火钢。采用Formastor-Digital全自动相变测试仪测定了试验钢的连续冷却转变(CCT)曲线,利用Gleeble-1500热模拟试验机研究了变形后不同冷却工艺对试验钢组织及硬度的影响,并采用SEM、EBSD、TEM和物理化学相分析等手段对热轧及600 ℃高温拉伸试样基体组织及纳米第二相进行了详细表征,定量分析了试验钢室温及高温下的强度机制。结果表明,轧后760~780 ℃开始层流冷却、终冷温度为400~600 ℃,试验钢获得铁素体+贝氏体组织。经600 ℃高温拉伸后,试验钢中MC相的质量分数及处于18 nm以下的粒子质量百分比相对于热轧态试样分别提高了16.4%、9.8%,这些新析出的纳米级粒子在高温下起到了良好的沉淀强化作用,一定程度弥补了高温下因剪切模量下降和细晶强化失效导致的高温屈服强度的损失;固溶、沉淀强化为Q345耐火钢主要的高温强化方式。  相似文献   

7.
 在实验室制备了钒微合金化高强耐候钢,通过拉伸试验、冲击试验、扫描电镜、透射电镜对试验钢的组织结构、力学性能以及第二相粒子析出行为进行了研究,分析了不同卷取温度对耐候钢显微组织和力学性能的影响。研究结果表明:随着卷取温度的降低,试验钢在550℃获得最佳力学性能,晶粒尺寸细小,细晶强化效果明显,但是钒的析出数量减少,析出强化作用减弱。试验钢在550℃卷取时组织为铁素体、珠光体以及部分针状铁素体,针状铁素体组织以及细晶强化共同作用不但弥补了该卷取温度下析出强化的不足,而且使得试验钢的力学性能有了明显提高。  相似文献   

8.
依托于超快速冷却技术(UFC)开发出一种钛微合金Q460钢板。研究轧后超快冷至不同温度(560℃、610℃和680℃)后试验钢的组织性能和析出行为,并对其综合强化机理进行了研究。研究结果表明:不同终冷温度条件下,试验钢组织均为多边形铁素体和块状珠光体组织,且随终冷温度降低,晶粒明显细化;经TEM分析统计,TiC数量密度随终冷温度的升高而增大;试验钢的抗拉强度和屈服强度随着终冷温度的升高均先降低后升高,-20℃冲击功随终冷温度的降低逐渐升高;当终冷温度为680℃时,试验钢屈服强度可达510 MPa,固溶强化、细晶强化、位错强化、析出强化对屈服强度的贡献率分别可达42 MPa、188 MPa、62 MPa和217 MPa。说明析出强化和细晶强化为试验钢的两种重要强化方式。  相似文献   

9.
为了探索碳含量对超低碳钢力学性能的影响,在实验室冶炼了3种碳质量分数分别为0.002%、0.005%、0.008%的超低碳钢,将其轧制成热轧板,并分析碳含量和热轧卷取温度对钢板的力学性能、显微组织和第二相析出的影响。结果表明,随着碳质量分数由0.002%增加至0.008%,钢的屈服强度、抗拉强度明显增加,断后伸长率降低;随着碳含量的升高,580℃卷取时的强度变化比730℃卷取时的更显著。试验钢晶粒尺寸由碳质量分数为0.002%、卷取温度为730℃时的22μm减小至碳质量分数为0.008%、卷取温度为580℃时的11μm,第二相TiC粒子平均尺寸半径由碳质量分数为0.002%、卷取温度为730℃的35 nm减小至碳质量分数为0.008%、卷取温度为580℃时的10 nm。在碳质量分数为0.008%、卷取温度为730℃时,钢板的屈服强度达到230 MPa以上,计算得出其细晶强化值为64.5 MPa、析出强化值为56.8 MPa。工业生产数据显示,碳质量分数为0.008%时,超低碳钢的力学性能水平可满足高强IF钢的标准要求。  相似文献   

10.
文章详细阐述了550 MPa级低合金高强钢的关键试制方案,包括化学成分、热轧工艺、冷轧工艺、退火工艺。研究了合金元素、生产工艺对产品组织及性能的影响。试制结果表明,550 MPa级低合金高强钢微观组织主要由铁素体与弥散分布的TiC析出相组成,其主要强化机制为细晶强化与析出强化。试制钢带屈服强度为556~581 MPa,抗拉强度为622~653 MPa,延伸率为14.0%~16.5%,满足相关标准及产品应用要求。  相似文献   

11.
研究了1050~1150℃固溶处理对20 kg真空感应炉熔炼的690镍基合金(%:0.020C、29.93Cr、9.82Fe、0.19Al、0.25 Ti、0.023Nb、0.012Mo、0.004 2N)1.0mm冷轧板的组织和力学性能的影响。结果表明,当固溶温度从1050℃提高至1100℃,平均晶粒尺寸呈线性增长,从12μm提高到29μm,超过1100℃时晶粒尺寸快速增长,1150℃时平均晶粒尺寸达58μm;1090℃以上固溶处理时,合金中富铬碳化物完全溶解;690镍基合金主要强化机制为细晶强化,随固溶温度升高,合金室温抗拉和屈服强度分别从780 MPa和400 MPa降至662.5 MPa和250MPa,伸长率由40%提高至51.75%。  相似文献   

12.
高强度低合金耐磨钢NM400的强韧化机制   总被引:1,自引:0,他引:1  
采用控轧控冷工艺生产的高强度低合金耐磨钢NM400,具有高强度、高硬度和较高的韧性,其屈服强度为1 170MPa,抗拉强度为1 369MPa,平均硬度为403HB,伸长率为23%,-20℃冲击功为47J。光学显微镜观察发现,NM400的组织为回火马氏体,淬透性良好;透射电镜下观察发现,钢中存在大量纳米尺寸级析出物,能谱分析表明,析出物为Ti,Nb的碳氮化物。分析结果表明,耐磨钢NM400的强化机制主要为位错强化、细晶强化和析出强化;细晶强化是韧性提高的主要原因。  相似文献   

13.
A hot-rolled steel with high yield strength of 700 MPa, good elongation of about 20% and low ductile-brittle transition temperature (DBTT) lower than-70℃ has been developed in laboratory. The results show that adopting finishing rolling temperature of around 800 ℃ is rational, and coiling temperature is between 400 and 500℃. The strength of developed 700 MPa hot-rolled high strength steel is derived from the cumulative contribution of fine grain size, dislocation hardening and precipitation hardening. The fine grain strengthening and precipitation hardening are the dominant factors responsible for such high strength, and good elongation and toughness are predominantly due to fine grain ferrite.  相似文献   

14.
In order to precisely control the nano‐scale (Nb,Ti)C precipitate in hot‐rolled 780 MPa Nb–Ti microalloying C–Mn steel, isothermal precipitation behavior of nano‐scale (Nb,Ti)C precipitate in the ultra‐high strength steel was investigated by the thermal simulation experiments. The results indicated that defects of deformed supercooled austenite became the preferential nucleation sites of nano‐scale (Nb,Ti)C precipitate and ferrite, so there was a competition mechanism for austenitic defects between ferritic transformation and precipitate nucleation. Bainitic transformation could effectively freeze austenitic defects, and additional defects are formed because of volume expansion in bainitic transformation process, so bainitic transformation could promote precipitate nucleation. However, precipitate was impacted by both nucleation driving force and atom diffusibility, so the peak temperature of nano‐scale (Nb,Ti)C precipitate was 550°C. On the basis of the above theoretical results, hot rolling experiments results showed that when the coiling temperature was 550°C, the yield strength and tensile strength were 710 and 790 MPa, respectively, and the microstructure of hot‐rolled steels was mainly bainitic ferrite, and a large number of <10 nm nano‐scale (Nb,Ti)C precipitates were obtained. Precipitation strengthening contribution to reached 325 MPa.  相似文献   

15.
采用退火试验,结合光学显微镜、扫描电镜、透射电镜和显微硬度计等设备,研究了不同退火温度对S700MC强化效果的影响。结果表明,退火处理能够显著影响碳化物形貌及变形区补充析出的细小铌和钛复合相的尺寸及分布。随着退火温度升高,碳化物及变形区补充析出的铌和钛复合相细化,弥散度提高,试样厚度方向上各检测位置的维氏硬度增大,强化效果显著;当退火温度升高至570 ℃时,碳化物及变形区补充析出的铌和钛复合相粗化,强化效果下降;而当退火温度为510 ℃ 时强化效果最佳。  相似文献   

16.
蔡伟  金梁  毛俊春  骆胜东  陈龙  王超 《中国冶金》2021,31(10):75-80
为了降低螺纹钢生产线坯料的生产成本,通过安装在16号轧机之后的预水冷装置对进入17号轧机的螺纹钢进行不同温度的控制,再经过17号和18号轧机对不同温度的螺纹钢进行轧制。探究了钢坯在不同相区进行轧制时对其组织性能的影响,结果表明,当钢种为HRB400-1NbS(Nb质量分数为0.025%)的螺纹钢在奥氏体未再结晶区轧制时(进入17号轧机的温度为(880±20) ℃),其屈服强度为437 MPa,抗拉强度为595 MPa;当钢种为HRB400-0NbS(Nb质量分数为0.015%)的螺纹钢在两相区轧制时(进入17号轧机的温度为(780±20) ℃),其屈服强度为435 MPa,抗拉强度为605 MPa;两者力学性能相差不大,这是因为HRB400-0NbS钢种在两相区轧制时,其晶粒度/级为10.5,相比HRB400-1NbS钢种在奥氏体未再结晶区轧制时晶粒度/级为9.5更加细小,通过细晶强化弥补了Nb所产出的第二相强化作用,为螺纹钢生产线坯料节约了每吨40~50元的成本。  相似文献   

17.
采用退火试验,结合光学显微镜、扫描电镜、透射电镜和显微硬度计等设备,研究了不同退火温度对S700MC强化效果的影响。结果表明,退火处理能够显著影响碳化物形貌及变形区补充析出的细小铌和钛复合相的尺寸及分布。随着退火温度升高,碳化物及变形区补充析出的铌和钛复合相细化,弥散度提高,试样厚度方向上各检测位置的维氏硬度增大,强化效果显著;当退火温度升高至570 ℃时,碳化物及变形区补充析出的铌和钛复合相粗化,强化效果下降;而当退火温度为510 ℃ 时强化效果最佳。  相似文献   

18.
韩荣  刘洪喜  尉文超  王毛球  时捷 《钢铁》2022,57(2):127-138
使用温成形替代热成形可以避免热成形过程中表面氧化等问题,但热成形常用22MnB5钢在高温回火后出现明显的软化现象.而通过向钢中添加Ti、V、Mo等微合金元素可以在钢中形成细小的析出相以及细化晶粒,起到提高强度的作用,从而可以解决该问题.因此,通过在22MnB5钢中添加Ti、V、Mo微合金元素,利用OM(光学显微镜)、F...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号